EGREGION: A Branch Coverage Tool for APL

Robert Bernecky
Snake Island Research Inc
18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9
Canada
+1 416 203 0854
bernecky@acm.org

Abstract tem. We introducesgregion a simple, easy-to-use
tool that assesses branch coverage in APL functions.
This article describes our experience with test suitege tool comprises a pair of APL functions that re-
and automated branch coverage tools for APL soffort detailed and summary function-level informa-
ware maintenance, based on our use of them to @sn about code coverage of test suites. TEgee-
ify Y2K compliance of an APL-based database sygion tool provides a line-by-line analysis of state-
tem. We introduceegregion a simple, easy-to-usément coverage, labels not branched to, branches
tool that assesses branch coverage in APL functiofgver taken, branches always taken, transfer of con-
The tool comprises a pair of APL functions that rero| via non-branches, and branches to non-labelled
pOI’t detailed and summary function-level informai'nes_ A|though we do not consider this ground_
tion about code coverage of test suites. Bgee- preaking work, we do believe that the coverage tool
gion tool provides a line-by-line analysis of stateyijll be valuable to APL programmers who are en-

ment coverage, labels not branched to, branchggyed in the creation of large, reliable applications.
never taken, branches always taken, transfer of con-

trol via non-branches, and branches to non-labelled
lines. Although we do not consider this groundt |ntroduction
breaking work, we do believe that the coverage tool

will be valuable to APL programmers who are er=or most programmers, testing is a poor cousin of the
gaged in the creation of large, reliable applicationgesign and writing process. For APL programmers,
This article describes our experience with test suit@g situation is even worse. Because APLilfates

and automated branch coverage tools for APL soffpid development and on-the-fly run-time error cor-

ware maintenance, based on our use of them 10 Vigletion, it has encouragedtade cowbogpproach to
ify Y2K compliance of an APL-based database sygpp|ication design, in which formal testing is, at best,

“This paper originally appeared in the APL98 Conferen@ afterthought. This _Unb_ridled' wild WESt:_ ql_JiCk'
Proceedings. [Ber98] draw approach to application development is finally

dying a well-deserved death, due to the legal impéble to them for verifying that programs are work-

cations of application support for the millennium g as desired.[Pre97] One of the simplest of these
the so-called Y2K problem — as well as the far moteols is code coverage, in the form of statement cov-
serious problems of computers in life-critical, reakrage or branch coverage. Code coverage, which
time systems such as fly-by-wire aircraft, automateteasures execution of statements or lines of a pro-
transit vehicles, and computer-controlled radiati@ram, is often denigrated as being inadequate to find
therapy machines. many types of program faults. Yet, in our experience,

As corporations become sensitized to these isstiesse who are most adamant about its faults are those
and adopt standards such as ISO9000, they will insigto have never used it in practice. We believe code
on more formal criteria for design, implementatiortoverage to be a good first step in formalizing the
test, acceptance, and audit of computer-based api@sting of applications, because it is easy to under-
cations. This timely change is a step toward maturgyand, simple to implement, offers rapid feedback,
for the computing world, much as the misfortunes ahd encourages programmers, once they have used
the early steam age led to formalization of engineéirfor a while and seen its benefits, to consider more
ing as a discipline and profession. sophisticated methods of testing.

An application programmer’s primary goal is to In the remainder of this article, we introduce the
guarantee the correctness of an application. Issgeacepts of basic blocks, control flow graphs, state-
of efficiency, maintainability, and elegance are irrement coverage, and branch coverage. Next, we show
evant if the answers are wrong or the applicatidrow code coverage can be measured with simple ex-
crashes. Unfortunately, there is no known way fressions and function monitoring primitives that are
achieve this guarantee algorithmically or mathematart of many commercial APL interpreters. Those
ically. Rather than throw up our hands and admjbverage expressions foregregion a pair of sim-
defeat, we turn to other engineering techniques to fsle, easy-to-use APL functions that facilitate mea-
crease our confidence that a program is operatingsasement of several aspects of program execution,
desired. including line-by-line analysis of statement cover-

Formal testing of applications, via program tesige, labels not branched to, branches never taken,
scripts that evolve in step with them, is as propéfanches always taken, unexpected transfer of con-
a part of system development as the actual writih®l via signals and interrupts, and branches to non-
of code. Just as civil engineers perform independdaitelled lines. Finally, we show a brief example of
tests of the concrete being poured for a bridge fouggregionin action, taken from the database applica-
dation, so programmers should encourage indepgion that brought us to write this tool.
dent evaluation of their applications, to ensure that
they meet design requirements and operate reliably.

Such testing must, by its nature, be objective, r&- Basic Blocks and Control Flow
peatable, and quantifiable. Code-cowboy testing, in

which a programmer enters a few simple expressidgasic blocks and control flow graphs are funda-
and declares an application successfully tested, ismental objects in the design of optimizing com-
longer an acceptable activity for a professional prpHers. When combined with techniques such as
grammer. Static Single Assignment (SSA), they also provide

Software engineers have a variety of tools avails with powerful analytical methods for making

2

assertions about the properties of variables indae to the presence of one or more of the following

program.[CFR 89, Ber9743]

In compiler design circles, basic blockis a se-
guence of program instructions that has only one en-
try point and one exit point of control flow. The entry
point may be a confluence of flows from other basic
blocks; at the exit point, control flow may branch out
to more than one other basic block. cantrol flow
graphcomprises a set of basic blocks as the vertices
of a graph and a set of directed edges joining appro-
priate entry and exit points of the basic blocks. Since
a program ultimately has a single entry point and sin-¢
gle exit point (to and from the operating system), two
distinguished vertices are added to the graph to de-
note thesestartandstopnodes.

In graph theory, theyclomatic numbeof a graph
g gives a rough measure of its complexity.[Pre97]
This number isCE g)+(C g)-V g, where the
functionsk, Cc, v give the number of edges, num-
ber of components, and number of vertices, respec-
tively.! Itis generally accepted that the higher the cy- o
clomatic number of a control flow graph, the harder
the associated program is to comprehend and main-
tain. Hence, programs with low cyclomatic numbers
are deemed to be superior to those with higher ones.

A branch-free APL function, such as the tradi-
tional one-liner, consists of exactly one basic block,
giving the minimum theoretic cyclomatic number of
zero? The degenerate structure of non-looping APL
functions significantly simplifies the comprehension
and analysis of a program, by eliminating branches
and effectively creating a single-assignment struc-
ture in which each name is given a value at exactly
one place in the program.

Unfortunately, the real-world often forces non- e
trivial APL functions to contain loops. This may be

1The number of components is always one in a program that
does not contain unreachable code.

2A matrix product witten as three nestedfor loops, by
comparison, would have a cyclomatic number of four.

factors:

A limitation in workspace size may force an
application to treat data in pieces. For exam-
ple, the SHARP APL mainframe product re-
stricts the maximum size of an active workspace
to 16 megabytes. This makes it impossible to
process large database feed files in parallel, be-
cause workspace full is a constant problem.

Iteration may be forced by the environment. For
example, a TCP/IP connection is inherently it-
erative, as are most applications involving files,
regardless of whether they are native (operat-
ing system) files or APL component files. Sim-
ilarly, a real-time data stream being received
from a satellite or radio telescope must be an-
alyzed as it arrives.

Iteration may be forced by performance consid-
erations, such as when a non-looping algorithm
has exponential computational complexity. One
class of problems that fall into this category are
those that are amenable to dynamic program-
ming solutions.[Ber95] Non-looping solutions
to these problems are typical@®(2V) in com-
plexity, making such algorithms impractical for
all but the smallest problems. By compari-
son, iterative dynamic programming solutions
are far faster, being of polynomial complexity,
typically taking time and space of orde&(N?)

or O(N3).

Iteration may be forced by the use or creation of
externally specified data structures over which
the programmer has no design control. For
example, compressed data files (ZIP, JPEG,
MPEG) may not be amenable to parallel anal-
ysis or generation.

¢ lteration may be forced by the algorithm itself, Branch coveragés achieved when all edges of the
because there are no known non-looping sokeentrol flow graph have been traversed by a program.
tions to it. For example, very large sparse sy$hat is, all statements have been executed, and all
tems of linear equations can not, in practiceyanch paths have been taken in each direction at
be solved with dense arrays, so explicit sparksast once.
array methods are called fdrThis eliminates Other, more comprehensive forms of code cov-
the possibility of using APL primitives for solv-erage are beyond the scope of this paper, as they
ing such problems, because present-day integnd to require complete flow control graphs and thus
preters do not provide support for sparse arragesjuire the assistance of an APL compiler’s front-
nor for overloading primitives to let the user deend. Nonetheless, the interested reader is urged to
fine such support. look further into this topic.[Pre97, Sho83, Wie96,
Ber97b]
Given that we are often forced to write iterative We now turn to a brief discussion of the benefits
functions, the problem of validating that code tand costs of code coverage.
ensure that it is operating correctly becomes much
hardgr. We turn to c_ode coverage and unit testlngé& Benefits of Code Coverage
functions as a possible solution.
Code coverage testing offers many advantages over
code-cowboy methods of testing. Perhaps the most
3 Code Coverage important of these is that it provides a quantifiable
) o and objective basis for an assertion that the most
This section introduces code coverage concepts %'Eﬁjegious bugs have been removed from a prodram.

terminology, then discusses the pros and cons Ofgqqse code coverage encourages the use of for-
code coverage as a tool for unit testing. mal test suites, tests are repeatable and objective.
This makes them amenable to independent evalua-
3.1 Code Coverage Terminology tion and reproduction by other parties, such as qual-
ity assurance teams. More importantly, they can
Statement coverags a measure of the number ohe automated, allowing them to be run effortlessly
statements in a program that were executed at leggknever desired.
once by some program. Achieving 100% statemenigiher penefits of code coverage and formal test
coverage implies that all statements in the prografjites include the following:
were executed at least once. In an APL function that
contains no branches or event traps, any successfu.I
execution of the function gives 100% statement cov-
erage.

Once written, the incremental cost of main-
taining and updating test suites is low, due to
the fact that well-structured testbeds provide a

3The sparse linear systems used in certain analyses of the quick and easy way for application developers
space shuttle design were of ord50,000. Dense representa- {0 preserve the tests they normally create in the
tions of such arrays occupy about 500 gigabytes and are imprac-

tical to store in present-day computers. Applying dense methods*This is why we adopteegregion as the name of the
to their solution is out of the question. branch coverage function.

process of enhancing or enhancing an applica-
tion.

Code coverage test suites increase the confi-
dence developers have in their applications, and
give them a feeling of accomplishment and a
sense of knowing when a project is complete.

The reliability of applications is improved, due

to detection of a large class of common code
faults. Execution of code coverage test suites
turns up syntax errors, value errors, mismatched
brackets and parentheses, and a few other egres
gious faults.

Specifications end up being enshrined in test
suites, in the form of a set of typical inputs and
specified outputs for the application. This may
not seem to add value to existing sources of in-
formation, but when someone drops an archaic®
“Raiders of the Lost Spec” application in your
lap for enhancement or repair, test suites often
come to the rescue as a clear, executable spec-
ification of what the application is supposed to
do and how it is intended to work. In the worst
case, when the documentation and code have
diverged due to poor maintenance procedures,
they even serve to show you what the applica-
tion really does!

Function monitoring on live systems can pro-
vide you with CPU and elapsed time profiling
information to track response time and predict
bottlenecks before they become acute.

Regression testing is trivial if the application al-
ready has a code coverage test suite, because a
new regression test is usually just one more line
in the test suite.

With the assistance of a state-of-the-art APL
compiler, such as APEX, all arguments, explicit

5

and implicit, can be analyzed to detect all value
errors, rank errors, and type mismatch (domain)
errors.[Ber97a] A compiler can also report the
type and rank of all function arguments, and
sometimes provide other information above and
beyond that. Other compiler-assisted methods
can reduce the number of tests that are required
and help to provide more complete testing at
lower cost than competing methods.

Support and QA personnel can use code cov-
erage test suites as a pre-installation validation
procedure for bug fixes and new releases of ap-
plications.

Feedback from automated code coverage tools
dramatically increases the speed of writing
test suites. In the late 1980s, for instance,
we applied code coverage techniques to the
SHARP APL mainframe product as part of
a performance-improvement initiative.[Ber89]
By developing a tool that automatically merged
hardware monitor information with program
listings, we were able to write complete branch
coverage test suites of a specific primitive
within a few hours. As the interpreter was writ-
ten in assembler code, this was a non-trivial
task. The most interesting aspect of the study
was the number obystem errors- bugs ex-
tant within the interpreter — that came to light.
Some of these were new, but others represented
failures that had been reported in the past, but
had never been corrected, due to our inabil-
ity to reproduce them. Obviously, if we had
made branch coverage test suites available in
the years before, we could have been shipping a
more robust product.

3.3 Objections to Code Coverage A manager of a large Japanese software develop-
ment group told me about his company’s method of

. o _dealing with this attitude. Their management did
method of unit test, it is not a panacea for producin

reliable applications. Creating any test suite re uirestinSiStthat programmers write code coverage test
cla " ppf roar r.nm rtirr? . dy n for t ? bi Uites for their applications, but they did encourage
an outidy ot programmer time, design Tor testabl ;¢ way: If the programmers did not supply
ity may complicate application design; construction

t 2 formal test environment may be non-trivial Ia coverage test suite with their completed program,
ot a formal test environme ay be ", they were required to personally provide all product

addition, code coverage testing may not catch das%bport for the application for the next five years!

sensitive faults, such as divide by zero, and edge con: L :

o : The objections raised by developers reflects a de-

ditions, such as improper treatment of empty arraysr.ee of insecurity and arrogance in a aroun who
This inability to detect a certain class of errors y 9 group

: . are often, not without some cause, considered to be
is often presented an as argument against all use Q
ima donna$. They also reflect several manage-

verage. A senior programmer with whorm[S . .
code coverage. A senior prog ment problems. The first is that imposing standards

worked for many years claimed that “...the serings . .
. r product test without buy-in from developers pro-
bugs only show up at customer sites, so why shoujd

| waste my time testing®?"This inflexible attitude is uces resentment. Second, establishment of prod-

difficult to change without strong support from Seu_ct ship dates without enough concern for the time

: required to create test suites from scratch is unreal-
nior management.

Clearly, egos form a strong basis of objections &%“C’ leading to shoddy products and Death March

the use of code coverage and to formal test suiPergJeCtS' Arelated problem is that, too often, testing

in general. When | was managing the SHARP AFJt?_rotocols are established, but they fall by the way-

: . side as deadlines and downsizing take their toll. Fur-
development department, | tried to introduce form .
. ermore, upper management is not always sympa-
test suites as a normal part of our development proce:- . .
. . : thetic. Formal test procedures are seen as delaying
dures. I received the following reactions from severa . L .
i product delivery and diverting developers from “use-
of our programmers:

ful work”

e “l am a good, competent programmer. | don’t Obviously, writing test suites and maintaining

need a babysitter looking over my shoulder” themin step with the application has an up-front cost,
but the incremental cost of maintaining test scripts

e “Don’t you trust my work?” in step with the application is fairly lowf they are,
in fact, maintained in the same manner and with the
same care as the applicationitself. In fact, if the scaf-

e “Testing takes too long. I'll miss the shipmentolding — the structure that is needed to support test

Code coverage is not without its problems. As

e “I'll test my work as | see fit.”

deadlines if | write test suites.” suites — is built first, most or all testing during de-
velopment can be performed in a manner that con-
e “Testing is for wimps.” structs the test suite as part of the development pro-

. n n -on r development i
5He also was prone to annotating the “What tests We(r:eess’ rather than as an add-on after development is

done?” section of the software change history log with “None@Mplete.Ad hoctesting always requires some sort
but what could possibly go wrong?” Subsequent trouble log en-
tries usually answered this question. 6] reluctantly count myself as an alumnus of this group.

of test environment. All that we require is thatdeveb.1 Self-containment

opers stop throwing away their test suites after e . .
dgvelopm%nt projegt y a\(/‘Vmenever possible, test suites should not depend on
' the existence of external files, such as session logs
It may also turn out that one set of test tools C%réptured in days of yore. Changes in output for-

Serve mﬁ_ny applllca'::pn_s. Slncedthat IS our hOperWat and display technology makes these difficult to
\(/jv_rltmg t 'S afrttlc et, ¢ 1S _|s|a good ttr']me tod turm 10 4, 5intain or extend. Obviously, if you are testing an
Iscussion ot test principles and the code COVer""(glﬁtputdriver, this recommendation is not applicable.

tool itself. Similarly, do not make your test suites depend on

large database files that system administrators may
) decide to delete in the interest of saving disk space,

4 Design for Test or which may only be available on a production sys-
tem, rather than on your development system.

Design for testis an approach to software design

that is simply the application of standard enginees:2 Reproducible

ing testing principles to computer programs. In the

construction of buildings and airplanes, for exampl@ll tests should be strictly reproducible. Do not use

design for test results in the inclusion of access pot@idom numbers for testing your code unless you

and hatches in the artifact, to facilitate routine maiglways seUr1 to a known value first. Using re-

tenance and regular inspection. Similarly, softwalpgoducible tests ensures that when something breaks

should be designed from the outset to facilitate maifWfing testing, it stays broken. Furthermore, you can

tenance, testing, and inspection. teII_W_hen ithas been fi_xed, because it.is reproducible.

It is far easier and faster to design an applicA!S IS not the case with random testing.
tion from the outset to facilitate testing and perfor-
mance monitoring than it is to retrofit such a capabf-3 Effective testing

ity when construction is nearly complete. For exanjgg terse tests to validate the behavior of specific,
ple, if you usead hocfunction paging mechanismsgesitive parts of each function. A test suite with a
it may be difficult to enable monitoring when a pega¢ nymber of test cases may, in fact, only exercise
formance problem arises and you want to find the, .+ of the application over and over again. As we
bottleneck in the application. shall see, a test script that had the appearance of hav-
ing been generated by an outer product produced 138
distinct tests, but only exercised 51% of the func-
5 Test Suite Design tion under test. By comparison, a test suite that was
generated interactively in a few hours wegregion
Designing test suites is a fairly straightforward actiwbtained more than 95% coverage with only 37 test
ity. However, bear in mind that are several pitfalls toases. A few well-thought-out tests are always supe-
avoid, if test suites are to help, rather than hinder, ther to many shot-in-the-dark tests.
rapid construction of reliable software. We now dis= TsetingOrL< 110t is not reproducible. It wil also

Cuss thpse pitfalls, as well as some of the desirai@sporadically, because zero is a bad seed for the random num-
properties that test suites should possess. ber generator.

5.4 Test error behavior e gives the QA and support teams a validation
tool for use on a target system, so they can en-
sure that the fix has been packaged and installed
properly,beforethe code is released for produc-
tion use.

Make sure that the application validates its argu-
ments properly and signals the appropriate error
when an argument is, in fact, invalid. To do this,

you should set a trap for the expected error, and en-
sure that, if the trap is not triggered, a fault message
is generated. If the trap is triggered, ensure that thé Keep test suites with source code

generated error is the one you were expecting. _ _
Keep test suite source code in the same place that

you keep the application source code, under the same
5.5 Design for Extendability versioning and release controls as the application
code. There are two reasons for doing this. First, if

Test suites should be built as open frameworks, §Q, o jites are not placed under version control, they

that it is obvious how to add additional tests, shou\llg” grow moldy, suffer code rot, and be out of date
they become necessary. Additional tesis become \iinin 5 year or so, or will be deleted by a zealous

necessary, because programs are alwaisg@part gy stem administrator seeking disk space. Second,

due to new features aode rot8. _ _ test suites must evolve as the application evolves. If
I_3y de5|gr_1!ng for extendabl_llty, we give the teSkelease 2 of an application has new features over Re-
suite the ability to support testing of new features, fisyse 1, then there must also be a Release 2 of the test

well as making it trivial for support personnel, qualsjite, evolved in step with the application, to allow
ity assurance auditors, and developers to add t§8%ting of those new features.

that reproduce newly found code faults.
Amending a test suite to reproduce a faudfore
attempting to repair the code fault has several beffe? Assert all results

fits. Specifically, it: . .
P y Ensure that a test case is working correctly, by ex-

ecuting an expression that compares the generated
» ensures that you understand what causes [Bg,it o the required result. If this is not done, all
fault well enough to reproduce it; that is known about the application is that it is exe-
_ _ _ cuting quietly. It may or may not be executing cor-
e ensures that the repair does, in fact, fix the Cop&tly. This step may seem obvious, but people ig-

fault, nore it more than they practice it.

e ensures that the repair does not cause existing
uses of the code to break; and 5.8 Do not set the fox to guard the chickens

8Code rotis the mysterious phenomenon whereby any cor®o not use the application’s code as the method for
puter program that is not under scrutiny on a day-to-day ba%&%serting that the results are correct. You may only

will fail in mysterious ways th_e next time you tr_y torun |t_. Coq%e getting the same wrong result twice! Note that
rot, generally most virulent just before a major deadline, is @

largely unstudied area of computer science. Like compost,”i'{i_S may eﬁeCtiV_eIY mean writing the_ application
offers fertile gpund for research. twice. Often, this is not such a bad idea. In our

case, as it turned out, we wrote a few utility funcscript. We executed a unit test script for the function
tions that, in conjunction, gave all the capability afnder control of a function monitor. The monitor
the old monolithic function under test, but withoytrovided us a vector of humberns; the number of
the convoluted control flow of the old one. As timémes each line in the function was executed. In the
permits, we plan to replace the old code with the ndvigure, the numbers down the left margin, represent-
functions. We certainly gained a better understaridg N, offer us several statistics about the execution
ing of the application by writing the utilities. of the program. Most obviously, the expression:
Another approach to result validation is to use N=0
hard-coded results, perhaps obtained from a contells us which lines of the function were never exe-
run. However, this tends to be tedious to maintaieted. For example, lines2 and30 were never ex-
and it can sometimes be difficult to preserve captureduted. Such ines could contain mis-matched paren-
results in a convenient form for comparison. theses or brackets, value errors, syntax errors, and
the like, but unless the test suite executes those lines,
those errors will be found by the customer, not by us!
The remainder of this section highlights some ex-
Checking side effects is particularly important whepfessions in thegregionfunction shownin Figure 2.
testing error behavior. If a function under test has tHewe locate the lines of the function that contain
nasty habit of changing a variable that is global Rfanch instructions, we can measure control flow
itself, ensure that it does not change when an erroP¥er some paths of the control flow graph. A crude
triggered by that function. This whole problem aregxpression such as:
can be neatly sidestepped by writing in a functional nbo<~b<«v/">'=fnt<«[lcr'Da'

programming style, which inherently is free of sidi§ adequate for most purposes, although it is clear
effects. that a simple tokenizer and syntax analyzer such as

is used in the front-end of APEX or Soliton’s Logos

source maintenance tool would perform better in the
6 A Simple Code Coverage Tool presence of quoted strings.JAGDH86, Ber97a]

An expression similar to that used to find branches

Most APL vendors offer function monitors with theimarks the lines of the function that contain line la-
products. A partial list of these is shown in Figure hels:
Function monitors typically provide the developer lab<'0123456789:"' o Find labels
with the number of times each function line was exe- lab<«lab, 'Aabc...xyz'
cuted, the cpu time for execution of each line, and the 1ab<lab, 'AABC...XYZ'
elapsed time for execution of each line. The SHARP lab<Vv/(A\fnte€lab)Afnt=":"

APL Ofm system function also supplies times inclu- NOW we locate the various branches-ini} and
sive and exclusive of sub-function calls. branches-out ofo) each line of the function:

Let us see how we can use the output of such aP1 N> 10N ¢ billiol«l

monitor to assist us in conducting a unit test of a PO N>1¢N ¢ bolliol«l o
function, Da. The function, edited for space rea- We are now prepared to gather our statistics:
sons, is shown in Figure 2, along with the annotatione branch not takenDifferences in line execution
provided byegregionas a result of running our test ~ counts between a line and its successor give us

5.9 Check side effects

9

control flow splits and joins. The predicateeeally work. The use oégregionleads to the cre-
computed earlier give us branch statemeb)s (ation of more robust applications through better test
with no branch-outt{o): scripts.

bA~bo

o 6.1 Current egregionLimitations
e branch always taken Similarly, branch-out o o
(bo) in a line with execution count of zero onfoday’s APL monitoring primitives record data on a

the next line tells us that a branch was alwajige-by-line basis. This means that they are not able
taken. to provide you with direct information about control

flow paths taken nor about execution of latter state-
ments in a diamondized lines. Until more advanced

« label not branched to A labelled expression monitoring tools are available, automated unit test-

thatis not a branch-in point reveals a branch taftd will be facilitated if you adopt a few stylistic
get that was never hit: coding conventions that let us deduce the missing in-

formation. If you use a source code control system,
such as Logos, you can write generation scripts to
automate most of this. Otherwise, you have to keep
Similar expressions tell us which error-signal exn eye on your programming style. Here are the con-
preSSionS were never exercised, which Unlabe”%htions we adopted for use Wiﬁgregion together

bAboA1PN=0

labA~bi

lines were branched to, and which lines had uneith the rationale for adoption of those conventions:

pected control flow interruption®(g, trapped do-
main error).

If we look at the output ofegregionfor the Da
function, shown in Figure 2, we see line execution
counts to the left of the function text, accompanied
by highlighting characters. Theshows that lines 22
and 37 were never executed by the test script. Line
15 contains a label that was never branched to, al-
though we deduce that control did fall into it from
line 14, because the line execution counts are both
10. This may represent a missing test case or an
unreferenced label. In this example, it is the for-
mer. Lines 3,25,32 contain branches that were never
taken, reflecting missing test cases or dead paths in
the control flow graph. Lines 21 and 29 contain
branches that were always taken, again reflecting, in
this particular function, missing test cases.

Examination okgregionoutput by the application
developer is almost always enlightening, as it shows
how limited is our knowledge of how our programs

10

e If a line contains an APL GOTO-{), no di-

amond statement separators may follow the
GOTO statement. This restriction arises be-
cause thenlyinformation available to the func-
tion monitor is the number of times ttiee was
executed. Consider the 4-statement line:

a ¢ b ¢ »cPlabel ¢ d

A function monitor might tell us that thikne
was executed five times, but We do not know
how many times eachktatemenin the line was
executed. We do not have the information we
need to determine if the statemedntafter the
GOTO was executed or not. An undiamondizer
function can be used to correct this problem in
extant code by eliminating diamondized expres-
sions from the code under test, or you could
write a compilation filter for Logos-based code,
as we did.

e If a line containing a GOTO or error signaller

is immediately followed by a line with a state-
ment label, an ambiguity arises, because the
function monitors give us line execution counts,
but no indication of control flow. In the fol-
lowing example, consider what would happen
if the first line (containing a GOTO) was ex-
ecuted two times and always branched to the
label always, and the line containing the la-
bel target was also coincidently branched to
two times. The first column represents execu-
tion counts for the line in the second column:

2 »condPalways

2 target:

.o C e °
2 always: foo ¢ -target

Here, egregionwould incorrectly claim, based
on the identical line execution counts, that the
GOTO was never taken, and that the line con-
taining the labeltarget was never the target
of a branch. Without a fancier function monitor,
we are unable to resolve this ambiguity directly.
However, it can be easily resolved by inserting
another line, such as a comment, between the
two lines? This task can be automated using
Logos, so that you can generate such comments
only when needed for purposes of code cover-
age.

When we place a comment line between the two
lines,egregionsees execution counts pf 0 2

2 »condPalways

0 A

2 target:

2 always: foo ¢ -=target

The extra line allows the tool to provide the cor-
rect result, informing the test suite writer that
another test is needed to exercise the branch-
not-taken path or that there is a dead edge in the
control flow graph.

e Code-cowboy branching — branching to abso-

lute or relative line numbers, rather than to a
label, is forbidden.

At presentegregionis unable to detect the set
of CASE-statement-like branch targets in an
APL branch expression that selects one of a
number of line labels. For example, this state-
ment can branch three ways or fall through to
the next statement, depending on the value and
shape oft:

»(lneg,lzero,lpos)[I]

The absence of any syntactic comprehension of
the program by the tool makes branch path ac-
counting impossible without the assistance of
Logos or the front-end of an APL compiler. All
we can do is to ensure that all lines contain-
ing labels have been the target of a successful
branch, and that fall-through paths have also
been executed.

and correctly determines that the GOTO was 8&:2 egregionin action

ways taken:

The synergy between test suites and tools unexpect-

edly surfaced recently in the APL application world

9Thi i L¥ef al- . . .
This method does not work for APL+Win, becalet al- o, \ye had an application dropped in our lap with
ways gives zero as the number of times a comment line was eXxe-

cuted. For this interpreter, you will have to delete all commeng!e assigned task of integrating a set of Y2_K changes
and insert a dummy non-comment statement when testing. into the source code control system, validating the

11

application’s Y2K compliance, and unleashing th@eted, a second step compared the output file to a
application on a set of internal users, all within a feeanned, hand-crafted version of the file, complaining
days. It all sounded very straightforward, since aii-it saw differences between the two. We deemed
other programmer had already updated the code fiois too fragile and labor-intensive, which is why we
Y2K support and created an extensive test suitestarted over with a new approach, using assertions to
validate it — one single function had 137 different tegtlidate correct operation.
cases written for it. We built a test suite driver that called a sub-
The reality of the situation was somewhat diffefunction for each major part of the application. This
ent. We integrated the changes, rebuilt the appliapproach allowed us to expand or change the test
tion, then ran the test suite. It apparently performedite as needs developed and time permitted. We
perfectly. Then, having built large systems beforthen wrote one driver sub-function at a time, with
we prudently dropped by the office of a database spétention paid to the issues described earlier. Using
cialist who was a frequent user of the applicatiosgparate sub-functions to test specific aspects of ap-
and asked him to try out the new code. In less thaplcation performance facilitates rapid development
minute, he had typed in three short expressions, eactd debugging, because a programmer need not test
of which caused the new code to fail in a differerihe entire application when working in an isolated
way. We had run into a code-cowboy test suite! Thpart of the application.
huge test suite had not, in fact, tested many of theWe wrote a new test suite from scratch and ran it
most common cases used in practice. This showetleregregion using the tool to evaluate and im-
that a large number of tests had little or no correlprove branch coverage. In a half-day, including the
tion to effective testing of an application. time required to write the test script scaffolding, it
At this point in time, we had a problem. Thehowed up five distinct bugs in the above-cited func-
application was supposed to “go live” on a nextion after it had passed all 137 developer-written
millenium-dated test APL system the next day, anests! Our speed in creating the test script was due
the code did not even work. It was tool time. entirely to having immediate feedback on branch
We built theegregiontool shown in Figure 3 andcoverage. It told us what paths in the function had
Figure 4 in an hour or so, made a minor change ot been exercised. This made it trivial for us, even
the application to enable SHARP AR1Lfm function though we had almost no knowledge of the specifi-
monitoring for all paged-in functions, then re-ran theation of the code we were testing, to add test cases
failed test suite under control efyregion It was im- that exercised all parts of the functions of interest.
mediately obvious that the test suite had failed to ex-The application went on to the millennium test
ercise half of the failing function, but had exerciseslystem on schedule, as planned. While the dust was
other pieces of code over and over again, to no beettling, we looked at the results of code coverage
efit. This explained the three failures created by oon the largest and problematic functions in the ap-
brown-thumbed colleague, but it was not going wlication. Figure 6 shows how the original test suite
help us to get the updated application out the doordompares to the one we wrote with the assistance of
timely fashion. It was test suite time. egregion for two typical functionspa andwe.
The original test suite consisted of simple expres-Looking at the number of test cases executed com-
sions that generated great volumes of output whighred to the amount of code actually executed, it was
were appended to a file. When the test suite cowery clear that the number of test cases had no re-

12

lationship to the amount of code that was actual® Acknowledgements

tested. With no feedback, the author of the original
script was shooting in the dark. Richard Levine made a number of constructive sug-

estions that improved the readability and presenta-

The original test suite failed to traverse ma _)
an of this article.

edges in the control flow graph, as evidenced by t
high branch always takerbranch not takepandno
branch to labelcounts, which would ideally all be
zero.

In spite of having more than three times as many
test cases, the original test suite missed testing half
of the code and a large number of potential paths
through it. The redundant tests in the original test
suite served no useful purpose, and merely slowed
the pace of testing. In contrasgregiongave us con-
cise test scripts and quantitative information about
the quality of our test suite.

7 Summary and Future Work

Branch coverage tools are not new to the software
engineering world, but they have not been used very
widely in APL applications. The amount of attention
being paid at present to correct application behavior
is changing this. Thegregiontool offers a simple
method for obtaining quantitative, reproducible, ob-
jective evaluations of unit test suites in the APL en-
vironment. The tool also provides a structure for cre-
ation of a performance measurement tool. The speed
with which applications can be inspected using test
suite results evaluated legregionshould give appli-
cation developers an incentive to use it on a regular
basis, even if their code is already a paragon of cor-
rectness.

One large SHARP APL site is now looking into
making automated execution and evaluation of test
suites an integral part of the software development
and release process.

13

Product Monitor enable Monitor disable Monitor report
APL+Win 1 Omf 'foo! 0 Omf 'foo' Omf 'foo!
Dyalog APL | (1N) OMONITOR 'foo!' | '' [OMONITOR 'foo' | OMONITOR 'foo'
SHARP APL | 63 Ofm 'foo! 0 Ofm 'foo’ "62 Ofm 'foo!

Figure 1: Function monitors in APL interpreters
References

[AGDHS86] David B. Allen, Leslie H. Goldsmith, Mark R. Dempsey, and Kevin L. Harrell. LOGOS: An

[Bersg]

[Ber95s]

[Ber97a]

[Ber97b]

[Berog]

[CFR+89]

[Pre97]
[Sho83]

[Wie96]

APL programming environment. IAPL86 Conference Proceeding®lume 16, pages 314—
325. ACM SIGAPL Quote Quad, July 1986.

Robert Bernecky. Profiling, performance, and perfectionA@M SIGAPL APL89 Session
Tutorials ACM SIGAPL, August 1989. ISBN 0-89791-331-0.

Robert Bernecky. The role of dynamic programming and control structures in performance.
In Marc Griffiths and Diane Whitehouse, editofd?L95 Conference Proceeding®lume 26,
pages 1-5. ACM SIGAPL Quote Quad, June 1995.

Robert Bernecky. APEX: The APL parallel executor. Master’s thesis, University of Toronto,
1997.

Robert Bernecky. An overview of the APEX compiler. Technical Report 305/97, Department
of Computer Science, University of Toronto, 1997.

Robert Bernecky. EGREGION: A branch coverage tool for APL. In Sergio Picchi and Marco
Micocci, editors APL98 Conference Proceedingemges 1-20. APL Italiana, July 1998.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. An
efficient method for computing static single assignment form.Cémference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Langupagss 23—35,
January 1989.

Roger S. PressmaBoftware Engineering: A Practitioner's ApproadiicGraw-Hill, 1997.

Martin L. ShoomanSoftware Engineering: Design, Reliability, and ManagemémtGraw-
Hill, 1983.

Karl E. WiegersCreating a Software Engineering CulturBorset House Publishing, 1996.

14

Legend:
Line never executed

Line contains diamonds and branches
Branch always taken

Branch never taken

Label never branched to

X

<
>
v

o>

33
33
33
33
33

1

1

1
32
32
32
10
10
10
22
22

0
22
22
22
22
22
16
16

(O)NNe)INe) INe) I @)

22
22

i

r-rhnra r rhrhb b

0]

11

2]

3]

41

5]

61

71
111
12]
131
141
15]
191
201
211
221
231
241
251
261
271
28]
291
301
311
321
331
347
351
361
371

Da;C;r;D;I;E;F;dtb;ts;b;i;txt;cr
cr<av[157]

ts<«dts ¢ dtb<« 0 100 ma date radix; snap ts once
»errx10=[nc 'B'
-19x1(PER>B)V(1+tPdata)<2

txt<«'error. upward timepacking only',cr
txt<txt,' Use clear first if desired'
txt Osignal 863

b<(PRA)P 0 1 ¢ b<(bAA€1B)V(~b)AA>1800
bl[1]«A[1]€ 99 "69 68

>(A/b)P13

A

err:txt<«'error.use for example: 13 periods
txt Osignal 863

13:¢6(0=4 Ows 'Yend')/'Yend<Tot>0'
»14x1F<(1tPdata)e 0 1

r<Ayy/ 1 0 ‘Ydata ¢ D<«PER,Ayy/datali;]
14 :PER<year<B

i« 99 69 1A[1]

»>(i>2)Perr a Invalid right argument
Atf«ixAtf#3

~(A[11="69)P16

A <periods dated PPPP to PPPP>
data<(1,PA)PA<Adgen(1+A),ts[1] ¢ -18
A

16:4(Tot>0)/'Tot<«1-Tot"'

>errx11Z£20PA

A<((0.5%PA),2)PA<1VA
data<(1,PA)PA«dtblR®OA ¢ Dow<+10
18:¢(0#£4 Ows 'Yend')/'Yend<Tot>0'
-0X1F

r<«r[;I«D[1] Aind 1+D]

Figure 2: Code coverage detailed report sample output

15

V r<egregionSummary fm;i;j;codes;f;fn

[1] A Summarize code coverage report from egregion
[2] a fm is character matrix output from egregion
[3] i«+/A\fm[;1]1#Z' ' a Find end of legend

[4] codes<«1 0+(i, 14Pfm)+fm e Legend less "Legend"
[51] codes<((1tPcodes), (+/V\O' 'v.Zcodes))tcodes
[6] f«(i,0)vfm na Delete boring stuff

[7] a Count number of violations

[8] r«+#f[;114Pcodes]=(11Pf)#Qcodesl[;,1]

[9] r<?((1+Pr),1)Pr

[10] fn<f[2;]

[11] fn<(fn1'1'")V(1+fn1';')+fn a Get function name
[12] fn<«'Code Coverage Summary for: ',fn
[13] r<r,'=',codes na Simple report
[A4] di<(T11pPr)l 1tpPfn
[15] =<' ',[0iol(itfn),[Oiol ((1tPr),id* r
\Y

Figure 3: Code coverage summary report function

16

(11

21

[31]

4]

[51]

(6l

71

[8l

[al

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

V r«fnt egregion n;bij;bo;dab;br;dia;cnt;nb;lab;s
a Produce code coverage report for function
a fnt is Ocr of function. n is vector of ilne counts
lab<+'0123456789:"' a Find statement labels
lab<lab, 'Aabcdefghijklmnopgrstuvwxyz'
lab<lab, ' AABCDEFGHIJKLMNOPQRSTUVWXYZ'
lab<«v/(A\fnt€lab)Afnt=":"
nb<«fntl;1]1='a' a Find comments
fnt<«('<[>,I3,<] >' Ofmt ~1+11+Pfnt),fnt a Append line #s
r<' X'[1+(~nb)An=0] A non-executed lines
r<((Pr),1)Pr
br<fnt='>' a Branches
dia<fnt='¢' a Diamonds
dab<«(v/br)Aav/dia e Lines with diamonds and branches
r<r,' ¢'[1+dabl]
bi<n> 1¢n
bildiol«1 & Branch in
bo<n>1¢n
boldiol«1 a Branch out
a Branch always taken

r<r,' =>'[1+(~nb)A(V/br)AboArl1dn=0]
A Branch never taken

r<r,' V'[1+(~nb)A(V/br)A~bo]

a All labels should be branched to
r<r,' :'[1+labA(~bi)An#0]

r<r,' ',(s((1%Pn),1)Pn),' ',fnt
nb<«1 U40P'Legend:' a Build legend

nb<nb, [Jio]40+'X Line never executed'

nb<nb, [Jiol,404'¢ Line contains diamonds and branches'
nb<nb, [Oio]l,404'> Branch always taken'

nb<nb, [Jio]l,404'+y Branch never taken'

nb<nb, [Oio]l,404': Label never branched to'

nb<nb, [Oio]l,40+"' !

s<(T1tPr)l 1tPnb

nb<«((1+Pnb),s)+tnb

r<nb, [Oio]l ((1%Pr),s)tr

Figure 4: Code coverage detailed report function

17

Code Coverage Summary for: We
68=X Line never executed
1=¢ Line contains diamonds and branches
8=-> Branch always taken
11=v Branch never taken
2=: Label never branched to

Figure 5: Code coverage summary report sample output

Test metric (desired value) Da We
Original | egregion| Original | egregion

Number of test cases (0) 138 37 131 38
Lines of code tested (100%) 51% 90% 40% 97%
Branch always taken (0%) 33% 10% 29% 11%
Branch not taken (0%) 11% 3% 39% 0%
No branch to label (0%) 9% 4% 13% 9%

Figure 6: Comparison of testing methods

18

