
EGREGION: A Branch Coverage Tool for APL�

Robert Bernecky
Snake Island Research Inc

18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9

Canada
+1 416 203 0854

bernecky@acm.org

Abstract

This article describes our experience with test suites
and automated branch coverage tools for APL soft-
ware maintenance, based on our use of them to ver-
ify Y2K compliance of an APL-based database sys-
tem. We introduceegregion, a simple, easy-to-use
tool that assesses branch coverage in APL functions.
The tool comprises a pair of APL functions that re-
port detailed and summary function-level informa-
tion about code coverage of test suites. Theegre-
gion tool provides a line-by-line analysis of state-
ment coverage, labels not branched to, branches
never taken, branches always taken, transfer of con-
trol via non-branches, and branches to non-labelled
lines. Although we do not consider this ground-
breaking work, we do believe that the coverage tool
will be valuable to APL programmers who are en-
gaged in the creation of large, reliable applications.
This article describes our experience with test suites
and automated branch coverage tools for APL soft-
ware maintenance, based on our use of them to ver-
ify Y2K compliance of an APL-based database sys-

�This paper originally appeared in the APL98 Conference
Proceedings. [Ber98]

tem. We introduceegregion, a simple, easy-to-use
tool that assesses branch coverage in APL functions.
The tool comprises a pair of APL functions that re-
port detailed and summary function-level informa-
tion about code coverage of test suites. Theegre-
gion tool provides a line-by-line analysis of state-
ment coverage, labels not branched to, branches
never taken, branches always taken, transfer of con-
trol via non-branches, and branches to non-labelled
lines. Although we do not consider this ground-
breaking work, we do believe that the coverage tool
will be valuable to APL programmers who are en-
gaged in the creation of large, reliable applications.

1 Introduction

For most programmers, testing is a poor cousin of the
design and writing process. For APL programmers,
the situation is even worse. Because APL facilitates
rapid development and on-the-fly run-time error cor-
rection, it has encouraged acode cowboyapproach to
application design, in which formal testing is, at best,
an afterthought. This unbridled, wild west, quick-
draw approach to application development is finally

1

dying a well-deserved death, due to the legal impli-
cations of application support for the millennium –
the so-called Y2K problem – as well as the far more
serious problems of computers in life-critical, real-
time systems such as fly-by-wire aircraft, automated
transit vehicles, and computer-controlled radiation
therapy machines.

As corporations become sensitized to these issues
and adopt standards such as ISO9000, they will insist
on more formal criteria for design, implementation,
test, acceptance, and audit of computer-based appli-
cations. This timely change is a step toward maturity
for the computing world, much as the misfortunes of
the early steam age led to formalization of engineer-
ing as a discipline and profession.

An application programmer’s primary goal is to
guarantee the correctness of an application. Issues
of efficiency, maintainability, and elegance are irrel-
evant if the answers are wrong or the application
crashes. Unfortunately, there is no known way to
achieve this guarantee algorithmically or mathemat-
ically. Rather than throw up our hands and admit
defeat, we turn to other engineering techniques to in-
crease our confidence that a program is operating as
desired.

Formal testing of applications, via program test
scripts that evolve in step with them, is as proper
a part of system development as the actual writing
of code. Just as civil engineers perform independent
tests of the concrete being poured for a bridge foun-
dation, so programmers should encourage indepen-
dent evaluation of their applications, to ensure that
they meet design requirements and operate reliably.
Such testing must, by its nature, be objective, re-
peatable, and quantifiable. Code-cowboy testing, in
which a programmer enters a few simple expressions
and declares an application successfully tested, is no
longer an acceptable activity for a professional pro-
grammer.

Software engineers have a variety of tools avail-

able to them for verifying that programs are work-
ing as desired.[Pre97] One of the simplest of these
tools is code coverage, in the form of statement cov-
erage or branch coverage. Code coverage, which
measures execution of statements or lines of a pro-
gram, is often denigrated as being inadequate to find
many types of program faults. Yet, in our experience,
those who are most adamant about its faults are those
who have never used it in practice. We believe code
coverage to be a good first step in formalizing the
testing of applications, because it is easy to under-
stand, simple to implement, offers rapid feedback,
and encourages programmers, once they have used
it for a while and seen its benefits, to consider more
sophisticated methods of testing.

In the remainder of this article, we introduce the
concepts of basic blocks, control flow graphs, state-
ment coverage, and branch coverage. Next, we show
how code coverage can be measured with simple ex-
pressions and function monitoring primitives that are
part of many commercial APL interpreters. Those
coverage expressions formegregion, a pair of sim-
ple, easy-to-use APL functions that facilitate mea-
surement of several aspects of program execution,
including line-by-line analysis of statement cover-
age, labels not branched to, branches never taken,
branches always taken, unexpected transfer of con-
trol via signals and interrupts, and branches to non-
labelled lines. Finally, we show a brief example of
egregionin action, taken from the database applica-
tion that brought us to write this tool.

2 Basic Blocks and Control Flow

Basic blocks and control flow graphs are funda-
mental objects in the design of optimizing com-
pilers. When combined with techniques such as
Static Single Assignment (SSA), they also provide
us with powerful analytical methods for making

2

assertions about the properties of variables in a
program.[CFR+89, Ber97a]

In compiler design circles, abasic blockis a se-
quence of program instructions that has only one en-
try point and one exit point of control flow. The entry
point may be a confluence of flows from other basic
blocks; at the exit point, control flow may branch out
to more than one other basic block. Acontrol flow
graphcomprises a set of basic blocks as the vertices
of a graph and a set of directed edges joining appro-
priate entry and exit points of the basic blocks. Since
a program ultimately has a single entry point and sin-
gle exit point (to and from the operating system), two
distinguished vertices are added to the graph to de-
note thesestartandstopnodes.

In graph theory, thecyclomatic numberof a graph
g gives a rough measure of its complexity.[Pre97]
This number is(E g)+(C g)-V g, where the
functionsE,C,V give the number of edges, num-
ber of components, and number of vertices, respec-
tively.1 It is generally accepted that the higher the cy-
clomatic number of a control flow graph, the harder
the associated program is to comprehend and main-
tain. Hence, programs with low cyclomatic numbers
are deemed to be superior to those with higher ones.

A branch-free APL function, such as the tradi-
tional one-liner, consists of exactly one basic block,
giving the minimum theoretic cyclomatic number of
zero.2 The degenerate structure of non-looping APL
functions significantly simplifies the comprehension
and analysis of a program, by eliminating branches
and effectively creating a single-assignment struc-
ture in which each name is given a value at exactly
one place in the program.

Unfortunately, the real-world often forces non-
trivial APL functions to contain loops. This may be

1The number of components is always one in a program that
does not contain unreachable code.

2A matrix product written as three nested:for loops, by
comparison, would have a cyclomatic number of four.

due to the presence of one or more of the following
factors:

� A limitation in workspace size may force an
application to treat data in pieces. For exam-
ple, the SHARP APL mainframe product re-
stricts the maximum size of an active workspace
to 16 megabytes. This makes it impossible to
process large database feed files in parallel, be-
cause workspace full is a constant problem.

� Iteration may be forced by the environment. For
example, a TCP/IP connection is inherently it-
erative, as are most applications involving files,
regardless of whether they are native (operat-
ing system) files or APL component files. Sim-
ilarly, a real-time data stream being received
from a satellite or radio telescope must be an-
alyzed as it arrives.

� Iteration may be forced by performance consid-
erations, such as when a non-looping algorithm
has exponential computational complexity. One
class of problems that fall into this category are
those that are amenable to dynamic program-
ming solutions.[Ber95] Non-looping solutions
to these problems are typicallyO(2N) in com-
plexity, making such algorithms impractical for
all but the smallest problems. By compari-
son, iterative dynamic programming solutions
are far faster, being of polynomial complexity,
typically taking time and space of orderO(N2)
or O(N3).

� Iteration may be forced by the use or creation of
externally specified data structures over which
the programmer has no design control. For
example, compressed data files (ZIP, JPEG,
MPEG) may not be amenable to parallel anal-
ysis or generation.

3

� Iteration may be forced by the algorithm itself,
because there are no known non-looping solu-
tions to it. For example, very large sparse sys-
tems of linear equations can not, in practice,
be solved with dense arrays, so explicit sparse
array methods are called for.3 This eliminates
the possibilityof using APL primitives for solv-
ing such problems, because present-day inter-
preters do not provide support for sparse arrays
nor for overloading primitives to let the user de-
fine such support.

Given that we are often forced to write iterative
functions, the problem of validating that code to
ensure that it is operating correctly becomes much
harder. We turn to code coverage and unit testing of
functions as a possible solution.

3 Code Coverage

This section introduces code coverage concepts and
terminology, then discusses the pros and cons of
code coverage as a tool for unit testing.

3.1 Code Coverage Terminology

Statement coverageis a measure of the number of
statements in a program that were executed at least
once by some program. Achieving 100% statement
coverage implies that all statements in the program
were executed at least once. In an APL function that
contains no branches or event traps, any successful
execution of the function gives 100% statement cov-
erage.

3The sparse linear systems used in certain analyses of the
space shuttle design were of order250,000. Dense representa-
tions of such arrays occupy about 500 gigabytes and are imprac-
tical to store in present-day computers. Applying dense methods
to their solution is out of the question.

Branch coverageis achieved when all edges of the
control flow graph have been traversed by a program.
That is, all statements have been executed, and all
branch paths have been taken in each direction at
least once.

Other, more comprehensive forms of code cov-
erage are beyond the scope of this paper, as they
tend to require complete flow control graphs and thus
require the assistance of an APL compiler’s front-
end. Nonetheless, the interested reader is urged to
look further into this topic.[Pre97, Sho83, Wie96,
Ber97b]

We now turn to a brief discussion of the benefits
and costs of code coverage.

3.2 Benefits of Code Coverage

Code coverage testing offers many advantages over
code-cowboy methods of testing. Perhaps the most
important of these is that it provides a quantifiable
and objective basis for an assertion that the most
egregious bugs have been removed from a program.4

Because code coverage encourages the use of for-
mal test suites, tests are repeatable and objective.
This makes them amenable to independent evalua-
tion and reproduction by other parties, such as qual-
ity assurance teams. More importantly, they can
be automated, allowing them to be run effortlessly
whenever desired.

Other benefits of code coverage and formal test
suites include the following:

� Once written, the incremental cost of main-
taining and updating test suites is low, due to
the fact that well-structured testbeds provide a
quick and easy way for application developers
to preserve the tests they normally create in the

4This is why we adoptedegregion as the name of the
branch coverage function.

4

process of enhancing or enhancing an applica-
tion.

� Code coverage test suites increase the confi-
dence developers have in their applications, and
give them a feeling of accomplishment and a
sense of knowing when a project is complete.

� The reliability of applications is improved, due
to detection of a large class of common code
faults. Execution of code coverage test suites
turns up syntax errors, value errors, mismatched
brackets and parentheses, and a few other egre-
gious faults.

� Specifications end up being enshrined in test
suites, in the form of a set of typical inputs and
specified outputs for the application. This may
not seem to add value to existing sources of in-
formation, but when someone drops an archaic
“Raiders of the Lost Spec” application in your
lap for enhancement or repair, test suites often
come to the rescue as a clear, executable spec-
ification of what the application is supposed to
do and how it is intended to work. In the worst
case, when the documentation and code have
diverged due to poor maintenance procedures,
they even serve to show you what the applica-
tion really does!

� Function monitoring on live systems can pro-
vide you with CPU and elapsed time profiling
information to track response time and predict
bottlenecks before they become acute.

� Regression testing is trivial if the application al-
ready has a code coverage test suite, because a
new regression test is usually just one more line
in the test suite.

� With the assistance of a state-of-the-art APL
compiler, such as APEX, all arguments, explicit

and implicit, can be analyzed to detect all value
errors, rank errors, and type mismatch (domain)
errors.[Ber97a] A compiler can also report the
type and rank of all function arguments, and
sometimes provide other information above and
beyond that. Other compiler-assisted methods
can reduce the number of tests that are required
and help to provide more complete testing at
lower cost than competing methods.

� Support and QA personnel can use code cov-
erage test suites as a pre-installation validation
procedure for bug fixes and new releases of ap-
plications.

� Feedback from automated code coverage tools
dramatically increases the speed of writing
test suites. In the late 1980s, for instance,
we applied code coverage techniques to the
SHARP APL mainframe product as part of
a performance-improvement initiative.[Ber89]
By developing a tool that automatically merged
hardware monitor information with program
listings, we were able to write complete branch
coverage test suites of a specific primitive
within a few hours. As the interpreter was writ-
ten in assembler code, this was a non-trivial
task. The most interesting aspect of the study
was the number ofsystem errors– bugs ex-
tant within the interpreter – that came to light.
Some of these were new, but others represented
failures that had been reported in the past, but
had never been corrected, due to our inabil-
ity to reproduce them. Obviously, if we had
made branch coverage test suites available in
the years before, we could have been shipping a
more robust product.

5

3.3 Objections to Code Coverage

Code coverage is not without its problems. As a
method of unit test, it is not a panacea for producing
reliable applications. Creating any test suite requires
an outlay of programmer time; design for testabil-
ity may complicate application design; construction
of a formal test environment may be non-trivial. In
addition, code coverage testing may not catch data-
sensitive faults, such as divide by zero, and edge con-
ditions, such as improper treatment of empty arrays.

This inability to detect a certain class of errors
is often presented an as argument against all use of
code coverage. A senior programmer with whom I
worked for many years claimed that “. . . the serious
bugs only show up at customer sites, so why should
I waste my time testing?”5 This inflexible attitude is
difficult to change without strong support from se-
nior management.

Clearly, egos form a strong basis of objections to
the use of code coverage and to formal test suites
in general. When I was managing the SHARP APL
development department, I tried to introduce formal
test suites as a normal part of our development proce-
dures. I received the following reactions from several
of our programmers:

� “I am a good, competent programmer. I don’t
need a babysitter looking over my shoulder.”

� “Don’t you trust my work?”

� “I’ll test my work as I see fit.”

� “Testing takes too long. I’ll miss the shipment
deadlines if I write test suites.”

� “Testing is for wimps.”

5He also was prone to annotating the “What tests were
done?” section of the software change history log with “None,
but what could possibly go wrong?” Subsequent trouble log en-
tries usually answered this question.

A manager of a large Japanese software develop-
ment group told me about his company’s method of
dealing with this attitude. Their management did
not insist that programmers write code coverage test
suites for their applications, but they did encourage
it in this way: If the programmers did not supply
a coverage test suite with their completed program,
they were required to personally provide all product
support for the application for the next five years!

The objections raised by developers reflects a de-
gree of insecurity and arrogance in a group who
are often, not without some cause, considered to be
prima donnas.6 They also reflect several manage-
ment problems. The first is that imposing standards
for product test without buy-in from developers pro-
duces resentment. Second, establishment of prod-
uct ship dates without enough concern for the time
required to create test suites from scratch is unreal-
istic, leading to shoddy products and Death March
projects. A related problem is that, too often, testing
protocols are established, but they fall by the way-
side as deadlines and downsizing take their toll. Fur-
thermore, upper management is not always sympa-
thetic. Formal test procedures are seen as delaying
product delivery and diverting developers from “use-
ful work”

Obviously, writing test suites and maintaining
them in step with the application has an up-front cost,
but the incremental cost of maintaining test scripts
in step with the application is fairly low,if they are,
in fact, maintained in the same manner and with the
same care as the application itself. In fact, if the scaf-
folding – the structure that is needed to support test
suites – is built first, most or all testing during de-
velopment can be performed in a manner that con-
structs the test suite as part of the development pro-
cess, rather than as an add-on after development is
complete.Ad hoctesting always requires some sort

6I reluctantly count myself as an alumnus of this group.

6

of test environment. All that we require is that devel-
opers stop throwing away their test suites after each
development project.

It may also turn out that one set of test tools can
serve many applications. Since that is our hope in
writing this article, this is a good time to turn to a
discussion of test principles and the code coverage
tool itself.

4 Design for Test

Design for testis an approach to software design
that is simply the application of standard engineer-
ing testing principles to computer programs. In the
construction of buildings and airplanes, for example,
design for test results in the inclusion of access ports
and hatches in the artifact, to facilitate routine main-
tenance and regular inspection. Similarly, software
should be designed from the outset to facilitate main-
tenance, testing, and inspection.

It is far easier and faster to design an applica-
tion from the outset to facilitate testing and perfor-
mance monitoring than it is to retrofit such a capabil-
ity when construction is nearly complete. For exam-
ple, if you usead hocfunction paging mechanisms,
it may be difficult to enable monitoring when a per-
formance problem arises and you want to find the
bottleneck in the application.

5 Test Suite Design

Designing test suites is a fairly straightforward activ-
ity. However, bear in mind that are several pitfalls to
avoid, if test suites are to help, rather than hinder, the
rapid construction of reliable software. We now dis-
cuss those pitfalls, as well as some of the desirable
properties that test suites should possess.

5.1 Self-containment

Whenever possible, test suites should not depend on
the existence of external files, such as session logs
captured in days of yore. Changes in output for-
mat and display technology makes these difficult to
maintain or extend. Obviously, if you are testing an
output driver, this recommendation is not applicable.
Similarly, do not make your test suites depend on
large database files that system administrators may
decide to delete in the interest of saving disk space,
or which may only be available on a production sys-
tem, rather than on your development system.

5.2 Reproducible

All tests should be strictly reproducible. Do not use
random numbers for testing your code unless you
always setÌrl to a known value first.7 Using re-
producible tests ensures that when something breaks
during testing, it stays broken. Furthermore, you can
tell when it has been fixed, because it is reproducible.
This is not the case with random testing.

5.3 Effective testing

Use terse tests to validate the behavior of specific,
sensitive parts of each function. A test suite with a
vast number of test cases may, in fact, only exercise
part of the application over and over again. As we
shall see, a test script that had the appearance of hav-
ing been generated by an outer product produced 138
distinct tests, but only exercised 51% of the func-
tion under test. By comparison, a test suite that was
generated interactively in a few hours withegregion
obtained more than 95% coverage with only 37 test
cases. A few well-thought-out tests are always supe-
rior to many shot-in-the-dark tests.

7SettingÌrlû¢1ÙÌts is not reproducible. It will also
fail sporadically, because zero is a bad seed for the random num-
ber generator.

7

5.4 Test error behavior

Make sure that the application validates its argu-
ments properly and signals the appropriate error
when an argument is, in fact, invalid. To do this,
you should set a trap for the expected error, and en-
sure that, if the trap is not triggered, a fault message
is generated. If the trap is triggered, ensure that the
generated error is the one you were expecting.

5.5 Design for Extendability

Test suites should be built as open frameworks, so
that it is obvious how to add additional tests, should
they become necessary. Additional testswill become
necessary, because programs are always falling apart
due to new features orcode rot.8

By designing for extendability, we give the test
suite the ability to support testing of new features, as
well as making it trivial for support personnel, qual-
ity assurance auditors, and developers to add tests
that reproduce newly found code faults.

Amending a test suite to reproduce a faultbefore
attempting to repair the code fault has several bene-
fits. Specifically, it:

� ensures that you understand what causes the
fault well enough to reproduce it;

� ensures that the repair does, in fact, fix the code
fault;

� ensures that the repair does not cause existing
uses of the code to break; and

8Code rotis the mysterious phenomenon whereby any com-
puter program that is not under scrutiny on a day-to-day basis,
will fail in mysterious ways the next time you try to run it. Code
rot, generally most virulent just before a major deadline, is a
largely unstudied area of computer science. Like compost, it
offers fertile ground for research.

� gives the QA and support teams a validation
tool for use on a target system, so they can en-
sure that the fix has been packaged and installed
properly,beforethe code is released for produc-
tion use.

5.6 Keep test suites with source code

Keep test suite source code in the same place that
you keep the application source code, under the same
versioning and release controls as the application
code. There are two reasons for doing this. First, if
test suites are not placed under version control, they
will grow moldy, suffer code rot, and be out of date
within a year or so, or will be deleted by a zealous
system administrator seeking disk space. Second,
test suites must evolve as the application evolves. If
Release 2 of an application has new features over Re-
lease 1, then there must also be a Release 2 of the test
suite, evolved in step with the application, to allow
testing of those new features.

5.7 Assert all results

Ensure that a test case is working correctly, by ex-
ecuting an expression that compares the generated
result to the required result. If this is not done, all
that is known about the application is that it is exe-
cuting quietly. It may or may not be executing cor-
rectly. This step may seem obvious, but people ig-
nore it more than they practice it.

5.8 Do not set the fox to guard the chickens

Do not use the application’s code as the method for
asserting that the results are correct. You may only
be getting the same wrong result twice! Note that
this may effectively mean writing the application
twice. Often, this is not such a bad idea. In our

8

case, as it turned out, we wrote a few utility func-
tions that, in conjunction, gave all the capability of
the old monolithic function under test, but without
the convoluted control flow of the old one. As time
permits, we plan to replace the old code with the new
functions. We certainly gained a better understand-
ing of the application by writing the utilities.

Another approach to result validation is to use
hard-coded results, perhaps obtained from a control
run. However, this tends to be tedious to maintain,
and it can sometimes be difficult to preserve captured
results in a convenient form for comparison.

5.9 Check side effects

Checking side effects is particularly important when
testing error behavior. If a function under test has the
nasty habit of changing a variable that is global to
itself, ensure that it does not change when an error is
triggered by that function. This whole problem area
can be neatly sidestepped by writing in a functional
programming style, which inherently is free of side
effects.

6 A Simple Code Coverage Tool

Most APL vendors offer function monitors with their
products. A partial list of these is shown in Figure 1.
Function monitors typically provide the developer
with the number of times each function line was exe-
cuted, the cpu time for execution of each line, and the
elapsed time for execution of each line. The SHARP
APL Ìfm system function also supplies times inclu-
sive and exclusive of sub-function calls.

Let us see how we can use the output of such a
monitor to assist us in conducting a unit test of a
function, Da. The function, edited for space rea-
sons, is shown in Figure 2, along with the annotation
provided byegregionas a result of running our test

script. We executed a unit test script for the function
under control of a function monitor. The monitor
provided us a vector of numbers,N: the number of
times each line in the function was executed. In the
Figure, the numbers down the left margin, represent-
ing N, offer us several statistics about the execution
of the program. Most obviously, the expression:

N=0
tells us which lines of the function were never exe-
cuted. For example, lines22 and30 were never ex-
ecuted. Such ines could contain mis-matched paren-
theses or brackets, value errors, syntax errors, and
the like, but unless the test suite executes those lines,
those errors will be found by the customer, not by us!

The remainder of this section highlights some ex-
pressions in theegregionfunction shown in Figure 2.
If we locate the lines of the function that contain
branch instructions, we can measure control flow
over some paths of the control flow graph. A crude
expression such as:
nbû~bû©/'ý'=fntûÌcr'Da'

is adequate for most purposes, although it is clear
that a simple tokenizer and syntax analyzer such as
is used in the front-end of APEX or Soliton’s Logos
source maintenance tool would perform better in the
presence of quoted strings.[AGDH86, Ber97a]

An expression similar to that used to find branches
marks the lines of the function that contain line la-
bels:
labû'0123456789:' ã Find labels
labûlab,'Èabc. . .xyz'
labûlab,'üABC. . .XYZ'
labû©/(^\fntÅlab)^fnt=':'
Now we locate the various branches-in (bi) and

branches-out of (bo) each line of the function:
biûN>¢1÷N þ bi[Ìio]û1
boûN>1÷N þ bo[Ìio]û1
We are now prepared to gather our statistics:

� branch not taken: Differences in line execution
counts between a line and its successor give us

9

control flow splits and joins. The predicates
computed earlier give us branch statements (b)
with no branch-out (bo):

b^~bo

� branch always taken: Similarly, branch-out
(bo) in a line with execution count of zero on
the next line tells us that a branch was always
taken.

b^bo^1÷N=0

� label not branched to: A labelled expression
that is not a branch-in point reveals a branch tar-
get that was never hit:

lab^~bi

Similar expressions tell us which error-signal ex-
pressions were never exercised, which unlabelled
lines were branched to, and which lines had unex-
pected control flow interruptions (e.g., trapped do-
main error).

If we look at the output ofegregionfor the Da
function, shown in Figure 2, we see line execution
counts to the left of the function text, accompanied
by highlighting characters. TheX shows that lines 22
and 37 were never executed by the test script. Line
15 contains a label that was never branched to, al-
though we deduce that control did fall into it from
line 14, because the line execution counts are both
10. This may represent a missing test case or an
unreferenced label. In this example, it is the for-
mer. Lines 3,25,32 contain branches that were never
taken, reflecting missing test cases or dead paths in
the control flow graph. Lines 21 and 29 contain
branches that were always taken, again reflecting, in
this particular function, missing test cases.

Examination ofegregionoutput by the application
developer is almost always enlightening, as it shows
how limited is our knowledge of how our programs

really work. The use ofegregionleads to the cre-
ation of more robust applications through better test
scripts.

6.1 Current egregionLimitations

Today’s APL monitoring primitives record data on a
line-by-line basis. This means that they are not able
to provide you with direct information about control
flow paths taken nor about execution of latter state-
ments in a diamondized lines. Until more advanced
monitoring tools are available, automated unit test-
ing will be facilitated if you adopt a few stylistic
coding conventions that let us deduce the missing in-
formation. If you use a source code control system,
such as Logos, you can write generation scripts to
automate most of this. Otherwise, you have to keep
an eye on your programming style. Here are the con-
ventions we adopted for use withegregion, together
with the rationale for adoption of those conventions:

� If a line contains an APL GOTO (ý), no di-
amond statement separators may follow the
GOTO statement. This restriction arises be-
cause theonlyinformation available to the func-
tion monitor is the number of times theline was
executed. Consider the 4-statement line:

a þ b þ ýcÒlabel þ d

A function monitor might tell us that thisline
was executed five times, but We do not know
how many times eachstatementin the line was
executed. We do not have the information we
need to determine if the statementd after the
GOTO was executed or not. An undiamondizer
function can be used to correct this problem in
extant code by eliminating diamondized expres-
sions from the code under test, or you could
write a compilation filter for Logos-based code,
as we did.

10

� If a line containing a GOTO or error signaller
is immediately followed by a line with a state-
ment label, an ambiguity arises, because the
function monitors give us line execution counts,
but no indication of control flow. In the fol-
lowing example, consider what would happen
if the first line (containing a GOTO) was ex-
ecuted two times and always branched to the
labelalways, and the line containing the la-
beltarget was also coincidently branched to
two times. The first column represents execu-
tion counts for the line in the second column:

2 ýcondÒalways
2 target: . . .
.
2 always: foo þ ýtarget

Here,egregionwould incorrectly claim, based
on the identical line execution counts, that the
GOTO was never taken, and that the line con-
taining the labeltarget was never the target
of a branch. Without a fancier function monitor,
we are unable to resolve this ambiguity directly.
However, it can be easily resolved by inserting
another line, such as a comment, between the
two lines.9 This task can be automated using
Logos, so that you can generate such comments
only when needed for purposes of code cover-
age.

When we place a comment line between the two
lines,egregionsees execution counts of2 0 2
and correctly determines that the GOTO was al-
ways taken:

9This method does not work for APL+Win, becauseÌmf al-
ways gives zero as the number of times a comment line was exe-
cuted. For this interpreter, you will have to delete all comments,
and insert a dummy non-comment statement when testing.

2 ýcondÒalways
0 ã
2 target: . . .
.
2 always: foo þ ýtarget

The extra line allows the tool to provide the cor-
rect result, informing the test suite writer that
another test is needed to exercise the branch-
not-taken path or that there is a dead edge in the
control flow graph.

� Code-cowboy branching – branching to abso-
lute or relative line numbers, rather than to a
label, is forbidden.

� At present,egregionis unable to detect the set
of CASE-statement-like branch targets in an
APL branch expression that selects one of a
number of line labels. For example, this state-
ment can branch three ways or fall through to
the next statement, depending on the value and
shape ofI:

ý(lneg,lzero,lpos)[I]

The absence of any syntactic comprehension of
the program by the tool makes branch path ac-
counting impossible without the assistance of
Logos or the front-end of an APL compiler. All
we can do is to ensure that all lines contain-
ing labels have been the target of a successful
branch, and that fall-through paths have also
been executed.

6.2 egregionin action

The synergy between test suites and tools unexpect-
edly surfaced recently in the APL application world
when we had an application dropped in our lap with
the assigned task of integrating a set of Y2K changes
into the source code control system, validating the

11

application’s Y2K compliance, and unleashing the
application on a set of internal users, all within a few
days. It all sounded very straightforward, since an-
other programmer had already updated the code for
Y2K support and created an extensive test suite to
validate it – one single function had 137 different test
cases written for it.

The reality of the situation was somewhat differ-
ent. We integrated the changes, rebuilt the applica-
tion, then ran the test suite. It apparently performed
perfectly. Then, having built large systems before,
we prudently dropped by the office of a database spe-
cialist who was a frequent user of the application,
and asked him to try out the new code. In less than a
minute, he had typed in three short expressions, each
of which caused the new code to fail in a different
way. We had run into a code-cowboy test suite! The
huge test suite had not, in fact, tested many of the
most common cases used in practice. This showed
that a large number of tests had little or no correla-
tion to effective testing of an application.

At this point in time, we had a problem. The
application was supposed to “go live” on a next-
millenium-dated test APL system the next day, and
the code did not even work. It was tool time.

We built theegregiontool shown in Figure 3 and
Figure 4 in an hour or so, made a minor change to
the application to enable SHARP APLÌfm function
monitoring for all paged-in functions, then re-ran the
failed test suite under control ofegregion. It was im-
mediately obvious that the test suite had failed to ex-
ercise half of the failing function, but had exercised
other pieces of code over and over again, to no ben-
efit. This explained the three failures created by our
brown-thumbed colleague, but it was not going to
help us to get the updated application out the door in
timely fashion. It was test suite time.

The original test suite consisted of simple expres-
sions that generated great volumes of output which
were appended to a file. When the test suite com-

pleted, a second step compared the output file to a
canned, hand-crafted version of the file, complaining
if it saw differences between the two. We deemed
this too fragile and labor-intensive, which is why we
started over with a new approach, using assertions to
validate correct operation.

We built a test suite driver that called a sub-
function for each major part of the application. This
approach allowed us to expand or change the test
suite as needs developed and time permitted. We
then wrote one driver sub-function at a time, with
attention paid to the issues described earlier. Using
separate sub-functions to test specific aspects of ap-
plication performance facilitates rapid development
and debugging, because a programmer need not test
the entire application when working in an isolated
part of the application.

We wrote a new test suite from scratch and ran it
underegregion, using the tool to evaluate and im-
prove branch coverage. In a half-day, including the
time required to write the test script scaffolding, it
showed up five distinct bugs in the above-cited func-
tion after it had passed all 137 developer-written
tests! Our speed in creating the test script was due
entirely to having immediate feedback on branch
coverage. It told us what paths in the function had
not been exercised. This made it trivial for us, even
though we had almost no knowledge of the specifi-
cation of the code we were testing, to add test cases
that exercised all parts of the functions of interest.

The application went on to the millennium test
system on schedule, as planned. While the dust was
settling, we looked at the results of code coverage
on the largest and problematic functions in the ap-
plication. Figure 6 shows how the original test suite
compares to the one we wrote with the assistance of
egregion, for two typical functions,Da andWe.

Looking at the number of test cases executed com-
pared to the amount of code actually executed, it was
very clear that the number of test cases had no re-

12

lationship to the amount of code that was actually
tested. With no feedback, the author of the original
script was shooting in the dark.

The original test suite failed to traverse many
edges in the control flow graph, as evidenced by the
high branch always taken, branch not taken, andno
branch to labelcounts, which would ideally all be
zero.

In spite of having more than three times as many
test cases, the original test suite missed testing half
of the code and a large number of potential paths
through it. The redundant tests in the original test
suite served no useful purpose, and merely slowed
the pace of testing. In contrast,egregiongave us con-
cise test scripts and quantitative information about
the quality of our test suite.

7 Summary and Future Work

Branch coverage tools are not new to the software
engineering world, but they have not been used very
widely in APL applications. The amount of attention
being paid at present to correct application behavior
is changing this. Theegregiontool offers a simple
method for obtaining quantitative, reproducible, ob-
jective evaluations of unit test suites in the APL en-
vironment. The tool also provides a structure for cre-
ation of a performance measurement tool. The speed
with which applications can be inspected using test
suite results evaluated byegregionshould give appli-
cation developers an incentive to use it on a regular
basis, even if their code is already a paragon of cor-
rectness.

One large SHARP APL site is now looking into
making automated execution and evaluation of test
suites an integral part of the software development
and release process.

8 Acknowledgements

Richard Levine made a number of constructive sug-
gestions that improved the readability and presenta-
tion of this article.

13

Product Monitor enable Monitor disable Monitor report
APL+Win 1 Ìmf 'foo' 0 Ìmf 'foo' Ìmf 'foo'
Dyalog APL (ÉN) ÌMONITOR 'foo' '' ÌMONITOR 'foo' ÌMONITOR 'foo'
SHARP APL 63 Ìfm 'foo' 0 Ìfm 'foo' ¢62 Ìfm 'foo'

Figure 1: Function monitors in APL interpreters

References

[AGDH86] David B. Allen, Leslie H. Goldsmith, Mark R. Dempsey, and Kevin L. Harrell. LOGOS: An
APL programming environment. InAPL86 Conference Proceedings, volume 16, pages 314–
325. ACM SIGAPL Quote Quad, July 1986.

[Ber89] Robert Bernecky. Profiling, performance, and perfection. InACM SIGAPL APL89 Session
Tutorials. ACM SIGAPL, August 1989. ISBN 0-89791-331-0.

[Ber95] Robert Bernecky. The role of dynamic programming and control structures in performance.
In Marc Griffiths and Diane Whitehouse, editors,APL95 Conference Proceedings, volume 26,
pages 1–5. ACM SIGAPL Quote Quad, June 1995.

[Ber97a] Robert Bernecky. APEX: The APL parallel executor. Master’s thesis, University of Toronto,
1997.

[Ber97b] Robert Bernecky. An overview of the APEX compiler. Technical Report 305/97, Department
of Computer Science, University of Toronto, 1997.

[Ber98] Robert Bernecky. EGREGION: A branch coverage tool for APL. In Sergio Picchi and Marco
Micocci, editors,APL98 Conference Proceedings, pages 1–20. APL Italiana, July 1998.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. An
efficient method for computing static single assignment form. InConference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Languages, pages 23–35,
January 1989.

[Pre97] Roger S. Pressman.Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1997.

[Sho83] Martin L. Shooman.Software Engineering: Design, Reliability, and Management. McGraw-
Hill, 1983.

[Wie96] Karl E. Wiegers.Creating a Software Engineering Culture. Dorset House Publishing, 1996.

14

Legend:
X Line never executed
þ Line contains diamonds and branches
ý Branch always taken
Õ Branch never taken
: Label never branched to

33 [0] Da;C;r;D;I;E;F;dtb;ts;b;i;txt;cr
33 [1] crûÌav[157]
33 [2] tsûÌts þ dtbû 0 100 ã date radix; snap ts once

Õ 33 [3] ýerr«É0=Ìnc 'B'
33 [4] ýl9«É(PER¦B)©(1ÙÒdata)<2
1 [5] txtû'error. upward timepacking only',cr
1 [6] txtûtxt,' Use clear first if desired'
1 [7] txt Ìsignal 863
32 [11] bû(ÒA)Ò 0 1 þ bû(b^AÅÉB)©(~b)^A>1800
32 [12] b[1]ûA[1]Å ¢99 ¢69 ¢68
32 [13] ý(^/b)Òl3
10 [14] ã

: 10 [15] err:txtû'error.use for example: 13 periods
10 [19] txt Ìsignal 863
22 [20] l3:â(0=4 Ìws 'Yend')/'YendûTot>0'

ý 22 [21] ýl4«ÉFû(1ÙÒdata)Å 0 1
X 0 [22] rûÈyy/ 1 0 Õdata þ DûPER,Èyy/data[1;]

22 [23] l4:PERûyearûB
22 [24] iû ¢99 ¢69 ÉA[1]

Õ 22 [25] ý(i>2)Òerr ã Invalid right argument
22 [26] Atfûi«Atf¨3
22 [27] ý(A[1]=¢69)Òl6
16 [28] ã <periods dated PPPP to PPPP>

þý 16 [29] dataû(1,ÒA)ÒAûÈdgen(1ÕA),ts[1] þ ýl8
0 [30] ã
6 [31] l6:â(Tot>0)/'Totû1-Tot'

Õ 6 [32] ýerr«É1¨2þÒA
6 [33] Aû((0.5«ÒA),2)ÒAû1ÕA
6 [34] dataû(1,ÒA)ÒAûdtbÂô÷A þ DowûÉ0
22 [35] l8:â(0¨4 Ìws 'Yend')/'YendûTot>0'

ý 22 [36] ý0«ÉF
X 0 [37] rûr[;IûD[1] Èind 1ÕD]

Figure 2: Code coverage detailed report sample output

15

 Ç rûegregionSummary fm;i;j;codes;f;fn
[1] ã Summarize code coverage report from egregion
[2] ã fm is character matrix output from egregion
[3] iû+/^\fm[;1]¨' ' ã Find end of legend
[4] codesû1 0Õ(i,¢1ÙÒfm)Ùfm ã Legend less "Legend"
[5] codesû((1ÙÒcodes),(+/©\÷' '©.¨codes))Ùcodes
[6] fû(i,0)Õfm ã Delete boring stuff
[7] ã Count number of violations
[8] rû+¯f[;É1ÙÒcodes]=(1ÙÒf)¯ôcodes[;,1]
[9] rûî((1ÙÒr),1)Òr
[10] fnûf[2;]
[11] fnû(fnÉ']')Õ(¢1+fnÉ';')Ùfn ã Get function name
[12] fnû'Code Coverage Summary for: ',fn
[13] rûr,'=',codes ã Simple report
[14] iû(¢1ÙÒr)Ó¢1ÙÒfn
[15] rû' ',[Ìio](iÙfn),[Ìio] ((1ÙÒr),i)Ù r
 Ç

Figure 3: Code coverage summary report function

16

 Ç rûfnt egregion n;bi;bo;dab;br;dia;cnt;nb;lab;s
[1] ã Produce code coverage report for function
[2] ã fnt is Ìcr of function. n is vector of ilne counts
[3] labû'0123456789:' ã Find statement labels
[4] labûlab,'Èabcdefghijklmnopqrstuvwxyz'
[5] labûlab,'üABCDEFGHIJKLMNOPQRSTUVWXYZ'
[6] labû©/(^\fntÅlab)^fnt=':'
[7] nbûfnt[;1]='ã' ã Find comments
[8] fntû('<[>,I3,<] >' Ìfmt ¢1+É1ÙÒfnt),fnt ã Append line #s
[9] rû' X'[1+(~nb)^n=0] ã non-executed lines
[10] rû((Òr),1)Òr
[11] brûfnt='ý' ã Branches
[12] diaûfnt='þ' ã Diamonds
[13] dabû(©/br)^©/dia ã Lines with diamonds and branches
[14] rûr,' þ'[1+dab]
[15] biûn>¢1÷n
[16] bi[Ìio]û1 ã Branch in
[17] boûn>1÷n
[18] bo[Ìio]û1 ã Branch out
[19] ã Branch always taken
[20] rûr,' ý'[1+(~nb)^(©/br)^bo^1÷n=0]
[21] ã Branch never taken
[22] rûr,' Õ'[1+(~nb)^(©/br)^~bo]
[23] ã All labels should be branched to
[24] rûr,' :'[1+lab^(~bi)^n¨0]
[25] rûr,' ',(î((1ÙÒn),1)Òn),' ',fnt
[26] nbû1 40Ò'Legend:' ã Build legend
[27] nbûnb,[Ìio]40Ù'X Line never executed'
[28] nbûnb,[Ìio],40Ù'þ Line contains diamonds and branches'
[29] nbûnb,[Ìio],40Ù'ý Branch always taken'
[30] nbûnb,[Ìio],40Ù'Õ Branch never taken'
[31] nbûnb,[Ìio],40Ù': Label never branched to'
[32] nbûnb,[Ìio],40Ù' '
[33] sû(¢1ÙÒr)Ó¢1ÙÒnb
[34] nbû((1ÙÒnb),s)Ùnb
[35] rûnb,[Ìio] ((1ÙÒr),s)Ùr
 Ç

Figure 4: Code coverage detailed report function

17

Code Coverage Summary for: We
 68=X Line never executed
 1=þ Line contains diamonds and branches
 8=ý Branch always taken
 11=Õ Branch never taken
 2=: Label never branched to

Figure 5: Code coverage summary report sample output

Test metric (desired value) Da We
Original egregion Original egregion

Number of test cases (0) 138 37 131 38
Lines of code tested (100%) 51% 90% 40% 97%
Branch always taken (0%) 33% 10% 29% 11%
Branch not taken (0%) 11% 3% 39% 0%
No branch to label (0%) 9% 4% 13% 9%

Figure 6: Comparison of testing methods

18

