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Abstract

This article describes howarray predicateswere
used to reduce the computational complexity of four
APL primitive functions when one of their argu-
ments is a permutation vector. The search primi-
tives, indexofand set membership, and the sorting
primitives,upgradeanddowngrade, execute in lin-
ear time on such arguments. Our contribution, a
method for static determination of array properties,
lets us generate code that is optimized for special
cases of primitives. Our approach eliminates run-
time checks which would otherwise slow down the
execution of all cases of the effected primitives. We
use the same analysis technique to reduce the type
complexity of certain array primitives.

1 Introduction

The search for terse, elegant algorithms is part of
the APL mythos. This passionate quest arises, in
part, from APL’s history as a language for teach-

�This paper originally appeared in the APL98 Conference
Proceedings. [Ber98]

ing mathematics and from the fact that array-based
languages, such as APL and J, naturally lend them-
selves to the description of non-iterative algorithms.
However, another cause of the quest is that APL pro-
grammersneed, rather than desire, non-iterative so-
lutions to such problems, because of the poor per-
formance of interpreter-based commercial APL sys-
tems on highly iterative programs. This performance
problem arises from the significant setup time and
storage management overhead associated with the
execution of each primitive in a program. Typi-
cally, this means that the execution time of an ap-
plication is dominated by the number of APL prim-
itives executed, rather than by the size of their array
arguments.[Ber97a, Wil91, Jor79]

1.1 Computational Complexity

As we shall see, non-iterative algorithms may have
higher computational complexity than iterative ones.
The computational complexityof an algorithm is a
function that tells us the number of steps a serial
computer requires to apply the algorithm on an argu-
ment of given size.[GJ79] These functions are gen-
erally expressed as polynomials or exponential func-
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tions of the argument size. For example, the com-
putational complexity of matrix product on square
matrices of orderN might be given ask«N*3, where
k is a scaling constant having to do with the effi-
ciency of an implementation. More often than not,
such constants are omitted, because we are more in-
terested in the order of complexity and finding ways
to reduce it.

2 Non-iterative Algorithms

APL programmers seek non-iterative algorithms for
reasons beyond performance, because non-iterative
algorithms are usually terse, enlightening, and easier
to prove correct than iterative ones. Unfortunately,
when non-iterative algorithms have higher computa-
tional complexity than iterative ones, the APL pro-
grammer faces a conundrum. Interpretive overheads
make iterative algorithms too slow, yet non-iterative
algorithms may be even slower. Their computational
complexity makes them impractical for many real-
istic applications: execution time and memory re-
quirements are unacceptably high. A simple exam-
ple of this can be found in thestring shuffleproblem,
which has exponential time (2N) and space complex-
ity when solved using a brute-force, non-iterative
APL algorithm, but which can be solved in quadratic
time (N2) with an iterative dynamic programming
algorithm. These computational complexity prob-
lems can sometimes be alleviated, without recourse
to explicit iteration or recursion, by designing sub-
tle algorithms that exploit such classical methods as
sorting, divide-and-conquer, and parallel-prefix op-
erations, including the APLscanadverb.

Unfortunately, these subtle methods generally
produce unsatisfying programs for reasons that go
beyond their pooer performance. Their didactic na-
ture and feeling of mathematical correctness is lost.
Furthermore, they may introduce undesired errors,

due to edge conditions, unforseen loss of precision,
or unexpected overflow.

Designers and implementors of APL systems have
made some progress in dealing with these perfor-
mance problems, but the state of the art remains in-
adequate to handle them all. Recently, we made
one more step along that road, by creating an APL
compiler, APEX, that solves some of these problems
in a general manner. APEX reduces the computa-
tional complexity of certain APL expressions to that
of iterative, scalar-oriented algorithms, while pre-
serving the didactic clarity of expression so dear to
APLers.[Ber97a]

3 Reduced Complexity in Compiled
Code

APEX, a state of the art APL compiler, uses opti-
mization techniques including loop fusion, code mo-
tion, common sub-expression elimination, strength
reduction, stack allocation of scalars, and refer-
ence count elimination to improve the performance
of APL programs. These optimizations reduce the
scaling constants associated with APL programs by
eliminating syntax analysis, avoiding creation of
array-valued temporary results, reducing or eliminat-
ing setup and dispatch cost, and by reducing or elim-
inating memory management operations.

These improvements in generated code culminate
in compiled APL applications that run up to 1000
times faster than they do under an interpreter, yet
those dramatic improvements are achieved, by and
large, without reducing the computational complex-
ity of the program. The computational complexity of
the underlying APL primitives generally remains the
same. If a programmer expresses an algorithm using
an upgrade, that upgradeand its associated execu-
tion time will still be visible in the execution of the
generated code.
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Our task, to attack those complexity problems and
reduce them to manageable size, is partly solved by
methods we describe here. We have made progress
in improving the performance ofupgrade, down-
grade, indexof, andset membershipon a certain class
of arguments. In all cases, the resulting primitives
execute in linear time. We now turn to the history of
this effort.

4 Array Predicates

During the development of the APEX APL Com-
piler, we were studying the performance of a run-
length encoding (RLE) benchmark used by a large
financial data supplier to compress massive amounts
of time-series data, such as historical records of
trading information for the world’s many stock ex-
changes. We predicted the benchmark would exe-
cute somewhat faster when compiled than when in-
terpreted, because the APL code was well-designed,
non-iterative, and short. Yet, the compiled code
ran 15 times slower than it did under the inter-
preter! Clearly, something was very wrong with the
compiler-generated code.

Immediately upon examination of the generated
code, the cause became clear. The expression
(NÒ2)Îintvec was the culprit. A sophisticated
interpreter, such as SHARP APL, would have pro-
duced a Boolean result for this case, but the compiler
was generating code that emitted an integer result.
All further computation using this result was in the
integer domain, so the performance of the remainder
of the application suffered accordingly.

At first, we suspected a simple result-type deter-
mination error in the APEX data flow analyzer, but
we soon realized that a fundamental design problem
was at hand: the compiler had no way to deduce that
the left argument to therepresentverb (Î) was a vec-
tor of 2s. In this case, a base-2 (Boolean) type result

is called for, yet the compiler was forced to generate
code that emitted an integer-type result.

To see how this situation arose, consider how an
interpreter with special-case run-time analysis code
in the representprimitive would work, compared to
the static analysis performed by a compiler. The in-
terpreter would examine the left argument torepre-
sentat run-time, determine that it consisted entirely
of 2s, and execute a fast algorithm that produced a
Boolean result. The compiler, by contrast, used data
flow analysis (DFA) to infer the type of the left ar-
gument torepresent.[Ber97a, Ber93] In the right ar-
gument to thereshapeexpressionNÒ2, the constant
2 is of type integer. Hence, the result type of there-
shapeexpression is also integer. Data flow analysis
within the compiler makes this determination stati-
cally, just as the interpreter does dynamically. How-
ever, since we do not know thevalueof N until run-
time, we do not know the value of the array resulting
from thereshape. Hence, the compiler is unable to
use partial evaluation at compile time, as it would if
the expression were derived from a constant expres-
sion such as8Ò2.

The compiler knows from DFA that the right argu-
ment torepresentis integer. The previous inference
on reshapetells us that the left argument torepresent
is also integer. Hence, DFA type determination must
predict an integer result forrepresent. Because the
compiler has no knowledge of the actual values in
the left argument, it has no way to predict the more
space- and time-efficient Boolean result.

We recognized that a programmer looking at the
expressionNÒ2 would immediately deduce that its
result will always consist entirely of the integer2.
Could we embed that sort of knowledge in the com-
piler in a general way? We thought a bit about the
analysis that the programmer did here, and came to
the realization that there are two facets to this form
of analysis:
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� First, arrays have a number of properties, which
we dubbedarray predicates, that may be of in-
terest to a primitive.

� Second, array predicates arecreated, destroyed,
and propagatedby each primitive, in a man-
ner that is dependent on the property and on the
primitive.

The array predicate of interest in this case was
that thearray consists entirely of the integer2. This
property was created by analysis of the constant2.
It was then passed to the data flow analyzer for re-
shape, which propagated it on the basis that the set
of values generated by reshape is always a subset of
its right argument. The property was then used to ad-
vantage by the code generator forrepresent, which
was able to generate a Boolean result. The array and
its associated array predicate were no longer needed
at this point, but nowrepresentcreated a Boolean
result, so the remainder of the application was now
able to generate Boolean results.

To confirm our hypothesis, we spent an hour or
so modifying the compiler to include support for ar-
ray predicates. We then re-compiled and re-ran the
RLE benchmark. The compiler now properly emit-
ted code that generated Boolean results. The com-
piled version of RLE executed 24% faster than it
did under the interpreter. Not a great win, but a
great improvement over its predecessor. Further-
more, this single special case substantially improved
APEX performance on other benchmarks.

For example, a cyclic redundancy check (CRC)
benchmark that exploited array predicates and other
optimizations ran 46–98 times faster than the inter-
preter.1 Nearly all of the remaining execution time
for the compiled version of CRC took place in initial-
ization code. When we extend partial evaluation in

1The CRC benchmark was kindly supplied by Leigh Clayton
of Soliton Associates Limited.

APEX, that initialization code will effectively vanish
– it will be performed once during compilation. At
that juncture, the compiled version of CRC will run
500–1000 times faster than the interpreted version.

Given the substantial performance boosts we ob-
tained with such minimal effort, we sought other
possible candidates for array predicates, coming up
with the list shown in Figure 1. Some of these
are discussed in detail in related papers.[Ber97a,
Ber97b] This obvious list is not exhaustive; it is
merely a starting point.

Predicate Description
PV permutation vector
PVSubset subset of permutation vector
NoDups elements all unique
All2 elements all integer 2
SortedUp elements in upgrade order
SortedDown elements in downgrade order
KnowValue value known at compile time
NonNeg elements all non-negative
Integer elements all integer-valued

Figure 1: Array predicates supported by APEX

The opportunity to exploit another predicate for-
tuitously arose when we were offered the opportu-
nity to study a performance problem being experi-
enced by a large European financial institution. We
now turn to that study, which led us to exploit array
predicates for improving the performance of APL’s
searching and sorting primitives.

5 Fast Searching and Sorting

A German bank was interested in improving the per-
formance of a large securities swapping application
that consumed several hundred hours of mainframe
processor time each month. Initially, we worked
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with the software firm that provided development
and maintenance support for the application to iden-
tify hot spots in this APL application. Next, we
built driver functions to exercise these hot spots, then
compared the performance of the compiled code to
that of the same application running under the inter-
preter on the same machine.

5.1 Improved Indexof Performance

We found that the performance of ourinterpolation
benchmark, DBT5, was heavily dominated by the
execution of two primitives,upgrade(è) andindexof
(É). One of the twoupgrades was used to sort the
incoming data; theindexofwas used to restore the
data to its original order at the end of the interpo-
lation operation. The domination of execution time
by two well-researched and highly optimized primi-
tives created a dilemma for us. How could a compiler
improve the performance of an application that was
spending most of its time in well-written, compiled
interpreter code that was itself already optimized?

In the course of studying the benchmark, we noted
that theindexofoperation was using the result of the
secondupgradeas its left argument. That is, one
part of the benchmark performed an expression of
the formX[siûèX;]; a later one performedsiÉY.
Seeing this, we realized that this case offered us
a golden opportunity to reduce the computational
complexity of theindexofprimitive.

At this point, we digress slightly to discuss how
indexofis implemented on typical APL interpreters.
In a well-designed APL implementation, thein-
dexofprimitive (ÁÉ×), applied to an integer left ar-
gument, takes time that is either roughly linear in
the size of×, with an order O((«/ÒÁ)«(«/Ò×))
worst case, ifindexofis implemented using hash ta-
bles. If indexofsorts its left argument, then uses
binary search to find elements of the other argu-
ment in that sorted array, the complexity is of order

O((Ó2ð«/ÒÁ)«(«/ÒÁ)+(«/Ò×)).
Back in the dark ages, we proposed hashing algo-

rithms as an effective way to implement APL search
primitives.2[Ber73] In that era, APL algorithms for
indexof and membershipwere linear searches that
took excruciating amounts of time to search arrays
that would fit in 48 kilobyte workspaces. Nowadays,
the unpredictable, abysmal worst-case performance
of hashing algorithms makes them a poor choice,
particularly on the multi-megabyte arguments that
now fit handily into PC memory.

Furthermore, the poor locality of spatial refer-
ence of hashing algorithms wreaks havoc with cache
memory. Their relative speed advantage over algo-
rithms based on binary search, never more than a
factor of about two on realistic data, lessens day by
day as the relative cost of a cache miss increases
with newer processors. In summary, we note that
any modern interpreter will executeindexofat a good
clip, so we return to the problem of beating the per-
formance of a well-designed primitive using com-
piled code.

The upgradeprimitive, by definition, produces a
permutation vector as its result. From this fact, we
deduce that the result ofupgradehas no duplicates
and that the elements in an N-element result are the
first N integers. With these facts in hand, we realized
that we could use a pigeon-hole algorithm to per-
form indexofon permutation vectors in linear time,
by building an N-element table,T, from the permu-
tation vector left argument, then indexingT with el-
ements of the right argument:

Tû(ÒÁ)Ò0
T[Á]ûÉÒÁ
zûT[×]

The algorithm as implemented had to perform limit
checks on elements of the right argument to en-

2It took two decades, but all major APL interpreter vendors
now all have fast versions ofindexof.
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sure that they were members ofÉÒÁ, but the two
requisite compare operations did not materially de-
grade performance. The result was that we were
able to generate code that executed in time of or-
der O((«/ÒÁ)+(«/Ò×)), significantly faster than
the interpreter algorithms. Also, because these algo-
rithms make only one storage reference per element
they are much kinder to cache memory than are hash-
based algorithms, which may make an large number
of them.

The result of using array predicates to detect cases
where a simplerindexofalgorithm can be used was
substantial. The compiled DBT5 benchmark now ex-
ecuted 3.1 times faster than the interpreted code, in
spite of the fact that an APEX compiler back-end de-
ficiency caused the compiled version ofupgradeto
perform quite poorly. We expect the relative perfor-
mance edge of APEX on this benchmark to be 6–10
times faster once theupgradeproblem is repaired.

5.2 Improved Upgrade Performance

We ran into another case of execution time being
dominated by a single primitive in the DBT2proba-
bility normalizationbenchmark. The DBT2 bench-
mark contained twoupgrades, which accounted for
92% of its execution time on the mainframe. As with
the DBT5 benchmark, we observed that the result of
oneupgradewas later used in another computation-
ally intensive computation, in this case, the second
upgrade. We applied the same technique of generat-
ing an optimizedupgradealgorithm for permutation
vectors. In this case, it was even simpler than thein-
dexofalgorithm, and did not require any limit checks
on the argument:

zû(Ò×)Ò0
z[×]ûÉÒ×

This simple optimization made DBT2 execute
20% faster under APEX than under the interpreter.

As with DBT5, it suffered from poor performance of
the remainingupgrade, which consumed 75% of the
benchmark’s CPU time. Again, we expect signifi-
cantly better performance when theupgradeproblem
is resolved.

6 Complexity Reduction in Inter-
preters

Can techniques based on array predicates be applied
effectively in APL interpreters to reduce the compu-
tational complexity of primitives in much the same
way that APEX does it? We do not believe so, at least
for the naive interpreters in commercial use now.

The main performance problem faced by inter-
preters today is the inordinate amount of over-
head associated with execution of a single primitive
function.[Ber97a, Wie86, Jor79] Introduction of ar-
ray predicates into the underlying array structures of
an interpreter would increase these overheads, be-
cause every primitive in the interpreter would have to
create, propagate, or destroy predicate values, even if
there was no chance of the predicate ever being put
to effective use. If, for instance, predicates increase
the cost of dispatching a primitive by 5%, but they
can only be exploited in 1% of the primitives exe-
cuted, then the net effect of their introduction will be
to slow down most applications, because almost all
applications have execution time profiles that closely
match the number of primitives executed. The trade-
offs here are quite similar to those in CISC versus
RISC computer architecture, and the evidence points
the same way: adding features to every code path in
an interpreter to detect special cases is usually a los-
ing proposition from the standpoint of system-wide
performance.

Things may not be as bad as they seem. We
think the best of both worlds can be achieved by us-
ing just-in-time (JIT) background compilation tech-
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niques within interpreters to get most of the per-
formance benefits of compilation for production ap-
plications, without losing the interactive facilities
of APL. The history of APL interpreter and com-
piler implementations makes it clear that such tools
must use sophisticated, optimizing compiler-based
methods, because the largest performance gains arise
from their use.

7 Performance of Related Primi-
tives

The algorithms just described apply equally well to
the APLset membershipprimitive and SHARP APL
nubsieveandlessprimitives, because they can be de-
fined on vector arguments in terms ofindexof: 3

 mem: (ÁÅ×)½(×ÉÁ)¨¢1+Ìio+Ò×
 nubsieve: (ÉÒ×)=×É×
 less: (~Á mem ×)/Á

Similarly, the array search and string search prim-
itive find (å) can be executed faster on a permuta-
tion vector right argument, because there can only
be a single occurrence of the left argument within
the right argument. Hence, the generated code can
stop looking for more matches after it finds the first
one.

Finally, indexing an array with a permutation vec-
tor need not perform array bounds checking within
the indexing loop. Instead, a single check forindex
error can be made by merely examining the shape of
the permutation vector.

Other optimizations of this type are clearly possi-
ble. In this paper, we merely point out some of the
more obvious ones.

3Of course, thenubsieveprimitive applied to a permutation
vectorP is merely(ÒP)Ò1. This results in a special case that
may be interesting for sales and marketing benchmarks, but that
is rarely, if ever, used in real applications.

8 Summary

Exploiting array predicates in a compiled APL en-
vironment allowed us to improve the storage and
CPU-time efficiency of a class of primitive functions.
Similar uses of array predicates allowed us to re-
duce the time complexity of the APL searching and
sorting primitives to linear time when one of their
arguments is a permutation vector. The analysis is
performed entirely at compile time, so there is no
adverse impact on the execution time performance
of the general-case primitives, as there would be if
they contained run-time checks to detect these spe-
cial cases.

The methods we developed for detecting and op-
timizing searching and sorting primitives on permu-
tation vectors obviously apply just as well to arith-
metic progression vectors (APVs), also known as j-
vectors.[Abr70, Ive73]. However, as the APEX com-
piler does not presently include support for APVs,
we are unable to report on this aspect of perfor-
mance.

9 Future Work

Array predicates give us a tool for simplifying the
computational complexity of primitive functions, but
they are not a complete answer. Some relatively sim-
ple problems remain intractable from a formal anal-
ysis standpoint. For example, consider the computa-
tion of a histogram from a vector of integers. This
can be performed in sequential code in linear time:

 Ç rûnbuck histlp nums;i
 [1] rûnbuckÒ0
 [2] :for i :in nums
 [3]   r[i]ûr[i]+1
 [4] :endfor
 Ç

Yet, when expressed as an obvious APL reduction
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of an outer product or one of its siblings, we end up
doing a quadratic amount of work:

 +/(Énbucks)Ê.=nums
 ((Énbucks)+/ê=)ê1 0 nums
 +/(Énbucks)=ê1 0 nums

In general, the set of APL expressions that are of
most interest are those with super-linear computa-
tional complexity in APL, but linear computational
complexity in scalar-oriented languages. These ex-
pressions usually involve inner or outer products,
scans, or reductions, as well as the searching and
sorting primitives discussed here.

One form of expression that is of interest arises
from a class of APL algorithms that perform outer
products, then extract the diagonal from the resulting
array. Such methods perform an immense amount
of needless computation. Demand-based evaluation
can mitigate this waste to some degree, but it is not
always an applicable solution.[Bud88]

A compiler or interpreter can use pattern or phrase
recognition to recognize some expressions of this
class and generate special-case code for them, but
this type of solution is labor-intensive for the com-
piler writer. It also does not provide a general so-
lution to the problem. We seek an approach to re-
ducing computational complexity that is not merely
a collection of special cases, but a general solution
that covers a multitude of similar problems.
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