Reducing Computational Complexity with Array Predicdtes

Robert Bernecky
Snake Island Research Inc
18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9
Canada
+1 416 203 0854
bernecky@acm.org

Abstract ing mathematics and from the fact that array-based
languages, such as APL and J, naturally lend them-
This article describes howrray predicateswere selves to the description of non-iterative algorithms.
used to reduce the computational complexity of fotfowever, another cause of the quest is that APL pro-
APL primitive functions when one of their argugrammersneed rather than desire, non-iterative so-
ments is a permutation vector. The search priniitions to such problems, because of the poor per-
tives, indexofand set membershjpand the sorting formance of interpreter-based commercial APL sys-
primitives, upgradeand downgrade execute in lin- tems on highly iterative programs. This performance
ear time on such arguments. Our contribution, groblem arises from the significant setup time and
method for static determination of array propertiestorage management overhead associated with the
lets us generate code that is optimized for specédecution of each primitive in a program. Typi-
cases of primitives. Our approach eliminates rupally, this means that the execution time of an ap-
time checks which would otherwise slow down thglication is dominated by the number of APL prim-
execution of all cases of the effected primitives. Wiives executed, rather than by the size of their array
use the same analysis technique to reduce the tgpguments.[Ber97a, Wil91, Jor79]
complexity of certain array primitives.

1.1 Computational Complexity

1 Introduction As we shall see, non-iterative algorithms may have

. . higher computational complexity than iterative ones.
The search for terse, elegant algorithms is part

the APL mvih Thi ionat ¢ ari "he computational complexitgf an algorithm is a
et ¢ mxpgs. hi tls passmlna € quesf ar'tses’rf]hnnction that tells us the number of steps a serial

part, from s history as a fanguage for teac computer requires to apply the algorithm on an argu-

“This paper originally appeared in the APL98 ConferendBent oOf given size.[GJ79] These functions are gen-

Proceedings. [Ber98] erally expressed as polynomials or exponential func-




tions of the argument size. For example, the comue to edge conditions, unforseen loss of precision,
putational complexity of matrix product on squarer unexpected overflow.
matrices of ordeN might be given a&xN*3, where  Designers and implementors of APL systems have
k is a scaling constant having to do with the effmade some progress in dealing with these perfor-
ciency of an implementation. More often than nataance problems, but the state of the art remains in-
such constants are omitteddause we are more inadequate to handle them all. Recently, we made
terested in the order of complexity and finding wayse more step along that road, by creating an APL
to reduce it. compiler, APEX, that solves some of these problems
in a general manner. APEX reduces the computa-
tional complexity of certain APL expressions to that
2 Non-iterative Algorithms of iterative, scalar-oriented algorithms, while pre-

serving the didactic clarity of expression so dear to
APL programmers seek non-iterative algorithms f@aPLers.[Ber97a]

reasons beyond performance, because non-iterative
algorithms are usually terse, enlightening, and easier o .
to prove correct than iterative ones. Unfortunately, Reduced Complexity in Compiled
when non-iterative algorithms have higher computa- Code
tional complexity than iterative ones, the APL pro-
grammer faces a conundrum. Interpretive overhea®BEX, a state of the art APL compiler, uses opti-
make iterative algorithms too slow, yet non-iterativ@ization techniques including loop fusion, code mo-
algorithms may be even slower. Their computatiort@dn, common sub-expression elimination, strength
complexity makes them impractical for many reateduction, stack allocation of scalars, and refer-
istic applications: execution time and memory rence count elimination to improve the performance
quirements are unacceptably high. A simple examf APL programs. These optimizations reduce the
ple of this can be found in th&ring shuffleoroblem, scaling constants associated with APL programs by
which has exponential time Y3 and space complex-eliminating syntax analysis, avoiding creation of
ity when solved using a brute-force, non-iterativarray-valued temporary results, reducing or eliminat-
APL algorithm, but which can be solved in quadratiag setup and dispatch cost, and by reducing or elim-
time (N?) with an iterative dynamic programmingnating memory management operations.
algorithm. These computational complexity prob- These improvements in generated code culminate
lems can sometimes be alleviated, without recouligecompiled APL applications that run up to 1000
to explicit iteration or recursion, by designing sultimes faster than they do under an interpreter, yet
tle algorithms that exploit such classical methods tise dramatic improvements are achieved, by and
sorting, divide-and-conquer, and parallel-prefix ofarge, without reducing the computational complex-
erations, including the APkcanadverb. ity of the program. The computational complexity of
Unfortunately, these subtle methods generatlye underlying APL primitives generally remains the
produce unsatisfying programs for reasons that game. If a programmer expresses an algorithm using
beyond their pooer performance. Their didactic nan upgrade thatupgradeand its associated execu-
ture and feeling of mathematical correctness is logan time will still be visible in the execution of the
Furthermore, they may introduce undesired errogenerated code.
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Our task, to attack those complexity problems afglcalled for, yet the compiler was forced to generate
reduce them to manageable size, is partly solveddnde that emitted an integer-type result.
methods we describe here. We have made progresg, gee how this situation arose, consider how an
in improving the performance afipgrade down- jnterpreter with special-case run-time analysis code
grade indexof andset membershipn a certain class;, e representprimitive would work, compared to
of arguments. In all cases, the resulting primitivgge static analysis performed by a compiler. The in-
execute in linear time. We now turn to the history %rpreter would examine the left argumentrépre-
this effort. sentat run-time, determine that it consisted entirely
of 2s, and execute a fast algorithm that produced a
Boolean result. The compiler, by contrast, used data
flow analysis (DFA) to infer the type of the left ar-

. gument torepresen{Ber97a, Ber93] In the right ar-
During the development of the APEX APL Comg ument to theeshapeexpressiomir2, the constant

piler, we were studying the performance of a rur%—is of type integer. Hence, the result type of the

length encoding (RLE) benchmark used by a Iar%ﬁapeexpression is also integer. Data flow analysis

financial data supplier to compress massive amou\rfv‘?nin the compiler makes this determination stati-

of tl_me-_senes Qata, such as hI,StOI’Ica| records gally, just as the interpreter does dynamically. How-
trading information for the world’s many stock ex-

h Wi dicted the benchmark Id ever, since we do not know thalueof N until run-
changes. e predicted the benchmark Would SXieq \ve do not know the value of the array resulting

;:ute storge;vhat fasttehr V\z]slrj co(;nplled tha|r|1 &Nh?n Yom thereshape Hence, the compiler is unable to
erpreted, because the code was well-designgg, partial evaluation at compile time, as it would if

non-iterative, and short. Yet, the compiled CO(r e expression were derived from a constant expres-

ran 15 times slower than it did under the mters-ion such ago2.

preter! Clearly, something was very wrong with the
compiler-generated code. The compiler knows from DFA that the right argu-

Immediately upon examination of the generatéﬂent torepresents integer. The previous inference
code, the cause became clear. The eXpress%Heshapaells us that the left argument tepresent
(NP2)Tintvec was the culprit. A sophisticateds als_o integer. Hence, DFA type determination must
interpreter, such as SHARP APL, would have prdg_redlct an integer result faepresent Because the_
duced a Boolean result for this case, but the compif@mpiler has no knowledge of the actual values in
was generating code that emitted an integer resii€ 1€ft argument, it has no way to predict the more
All further computation using this result was in théPace- and time-efficient Boolean result.
integer domain, so the performance of the remaindeiVe recognized that a programmer looking at the
of the application suffered accordingly. expressiorme2 would immediately deduce that its

At first, we suspected a simple result-type detaesult will always consist entirely of the integer
mination error in the APEX data flow analyzer, bufould we embed that sort of knowledge in the com-
we soon realized that a fundamental design problgifer in a general way? We thought a bit about the
was at hand: the compiler had no way to deduce tlaatalysis that the programmer did here, and came to
the left argument to theepresenwerb (T) was a vec- the realization that there are two facets to this form
tor of 2s. In this case, a base-2 (Boolean) type resoftanalysis:

4 Array Predicates
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e First, arrays have a number of properties, whi&PEX, that initialization code will effectively vanish
we dubbedarray predicatesthat may be of in- — it will be performed once during compilation. At
terest to a primitive. that juncture, the compiled version of CRC will run

_ 500-1000 times faster than the interpreted version.

» Second, array predicates areated destroyed  Gjyen the substantial performance boosts we ob-
and propagatedby each primitive, in & man-(ained with such minimal effort, we sought other
ner thatis dependent on the property and on thEqqibje candidates for array predicates, coming up
primitive. with the list shown in Figure 1. Some of these

are discussed in detail in related papers.[Ber97a,

The array predl_cate Of Interest n this case W%%rQ?b] This obvious list is not exhaustive; it is
that thearray consists entirely of the integer This merely a starting point

property was created by analysis of the constant
It was then passed to the data flow analyzer for re-[ predicate Description

shape, which propagated it on the basis that the setpy permutation vector

of values generated by reshape is always a subset ofpysypset | subset of permutation vectar
its right argument. The property was then used to ady NoDups elements all unique

vantage by the code generator fepresent which All2 elements all integer 2

was able to generate a Boolean result. The array and SortedUp elements in upgrade order
its associated array predicate were no longer needefisortedDown| elements in downgrade order
at this point, but nowepresentcreated a Boolean | knpowvalue | value known at compile time
result, so the remainder of the application was now| NonNeg elements all non-negative
able to generate Boolean results. Integer elements all integer-valued
To confirm our hypothesis, we spent an hour or
so modifying the compiler to include support for ar- Figure 1: Array predicates supported by APEX
ray predicates. We then re-compiled and re-ran the
RLE benchmark. The compiler now properly emit-
ted code that generated Boolean results. The comJ e opportunity to exploit another predicate for-
piled version of RLE executed 24% faster than f¢itously arose when we were offered the opportu-
did under the interpreter. Not a great win, but &ty to study a performance problem being experi-
great improvement over its predecessor. FurthéRced by a large European financial institution. We
more, this single special case substantially improvB@W tumn to that study, which led us to exploit array
APEX performance on other benchmarks. predicates for improving the performance of APL's
For example, a cyclic redundancy cheRC) Searching and sorting primitives.
benchmark that exploited array predicates and other

optimizations ran 46-98 times faster than the intq‘i-;- Fast Searching and Sorting
preter Nearly all of the remaining execution time

for the compiled version of CRC took place iniinitial, German bank was interested in improving the per-

ization code. When we extend partial evaluation }g,mance of a large securities swapping application

IThe CRC benchmark was kindly supplied by Leigh Claytdfnat consumed several hundred hours of mainframe
of Soliton Associates Limited. processor time each month. itially, we worked




with the software firm that provided developme®((T2&x/Pa)x(x/Pa)+(x/Pw)).

and maintenance support for the application to iden-Back in the dark ages, we proposed hashing algo-
tify hot spots in this APL application. Next, werithms as an effective way to implement APL search
built driver functions to exercise these hot spots, therimitives?[Ber73] In that era, APL algorithms for
compared the performance of the compiled codeitmlexofand membershipvere linear searches that
that of the same application running under the intéook excruciating amounts of time to search arrays
preter on the same machine. that would fit in 48 kilobyte workspaces. Nowadays,
the unpredictable, abysmal worst-case performance
of hashing algorithms makes them a poor choice,
particularly on the multi-megabyte arguments that
We found that the performance of omterpolation now fit handily into PC memory.

benchmark, DBT5, was heavily dominated by the Furthermore, the poor locality of spatial refer-
execution of two primitivesypgrade(A) andindexof ence of hashing algorithms wreaks havoc with cache
(1). One of the twoupgrades was used to sort thememory. Their relative speed advantage over algo-
incoming data; thendexofwas used to restore theithms based on binary search, never more than a
data to its original order at the end of the interpéactor of about two on realistic data, lessens day by
lation operation. The domination of execution timgay as the relative cost of a cache miss increases
by two well-researched and highly optimized primiwith newer processors. In summary, we note that
tives created a dilemma for us. How could a compilany modern interpreter will execuitedexofat a good
improve the performance of an application that watip, so we return to the problem of beating the per-
spending most of its time in well-written, compiledormance of a well-designed primitive using com-
interpreter code that was itself already optimized?piled code.

In the course of studying the benchmark, we notedThe upgradeprimitive, by definition, produces a
that theindexofoperation was using the result of thpermutation vector as its result. From this fact, we
secondupgradeas its left argument. That is, oneleduce that the result afpgradehas no duplicates
part of the benchmark performed an expressionarid that the elements in an N-element result are the
the formx[si<AX; 1; alater one performedi1y. first N integers. With these facts in hand, we realized
Seeing this, we realized that this case offered thst we could use a pigeon-hole algorithm to per-
a golden opportunity to reduce the computationfalrm indexofon permutation vectors in linear time,
complexity of theindexofprimitive. by building an N-element table;, from the permu-

At this point, we digress slightly to discuss houation vector left argument, then indeximgwith el-
indexofis implemented on typical APL interpretersements of the right argument:

In a well-designed APL implementation, the-

5.1 Improved Indexof Performance

S . . T« (Pa)PO
dexofprimitive (c1w), applied to an integer left ar- Tlo]<1pa
gument, takes time that is either roughly linear in Z<T[w]

the size ofw, with an order O(x/pPa)x(x/Pw)) _ , .
worst case, ifndexofis implemented using hash ta] h€ algorithm as implemented had to perform limit

bles. If indexofsorts its left argument, then use§hecks on elements of the right argument to en-

binary search to find elements of the other argu-2y 1ok two decades, but all major APL interpreter vendors
ment in that sorted array, the complexity is of ord@bw all have fast versions @idexof
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sure that they were members ofa, but the two As with DBTS5, it suffered from poor performance of
requisite compare operations did not materially déte remainingipgrade which consumed 75% of the
grade performance. The result was that we wdsenchmark’s CPU time. Again, we expect signifi-
able to generate code that executed in time of @antly better performance when tinggradeproblem
der O((x/pa)+(x/pPw)), significantly faster thanis resolved.

the interpreter algorithms. Also, because these algo-

rithms make only one storage reference per element . . .

they are much kinder to cache memory than are ha%n- Complexity Reduction in Inter-
based algorithms, which may make an large number preters

of them.

The result of using array predicates to detect cagean techniques based on array predicates be applied
where a simpleindexofalgorithm can be used wasffectively in APL interpreters to reduce the compu-
substantial. The compiled DBT5 benchmark now esational complexity of primitives in much the same
ecuted 3.1 times faster than the interpreted codeway that APEX does it? We do not believe so, at least
spite of the fact that an APEX compiler back-end déer the naive interpreters in commercial use now.
ficiency caused the compiled versionwggradeto ~ The main performance problem faced by inter-
perform quite poorly. We expect the relative perfopreters today is the inordinate amount of over-
mance edge of APEX on this benchmark to be 6—b@ad associated with execution of a single primitive
times faster once thepgradeproblem is repaired. function.[Ber97a, Wie86, Jor79] Introduction of ar-
ray predicates into the underlying array structures of
an interpreter would increase these overheads, be-
cause every primitive in the interpreter would have to
We ran into another case of execution time beiggeate, propagate, or destroy predicate values, even if
dominated by a single primitive in the DBT#oba- there was no chance of the predicate ever being put
bility normalizationbenchmark. The DBT2 bench+o effective use. If, for instance, predicates increase
mark contained twaipgrades, which accounted forthe cost of dispatching a primitive by 5%, but they
92% of its execution time on the mainframe. As withan only be exploited in 1% of the primitives exe-
the DBT5 benchmark, we observed that the result@fted, then the net effect of their introduction will be
oneupgradewas later used in another computatiorio slow down most applications, because almost alll
ally intensive computation, in this case, the secoagplications have execution time profiles that closely
upgrade We applied the same technique of generamatch the number of primitives executed. The trade-
ing an optimizedipgradealgorithm for permutation offs here are quite similar to those in CISC versus
vectors. In this case, it was even simpler thanithe RISC computer architecture, and the evidence points
dexofalgorithm, and did not require any limit check#he same way: adding features to every code path in

5.2 Improved Upgrade Performance

on the argument: an interpreter to detect special cases is usually a los-
ing proposition from the standpoint of system-wide
z<(Pw)PO
performance.

zlwlerpw Things may not be as bad as they seem. We

This simple optimization made DBT2 executéhink the best of both worlds can be achieved by us-
20% faster under APEX than under the interpretérg just-in-time (JIT) background compilation tech-

6



niques within interpreters to get most of the peB Summary

formance benefits of compilation for production ap-

plications, without losing the interactive facilitiesExploiting array predicates in a compiled APL en-

of APL. The history of APL interpreter and com¥ironment allowed us to improve the storage and
piler implementations makes it clear that such todi?U-time efficiency of a class of primitive functions.

must use sophisticated, optimizing compiler-bas&imilar uses of array predicates allowed us to re-

methods, because the largest performance gains &fli¢ee the time complexity of the APL searching and
from their use. sorting primitives to linear time when one of their

arguments is a permutation vector. The analysis is

performed entirely at compile time, so there is no

7 Performance of Related Primi- adverse impact on the execution time performance
tives of the general-case primitives, as there would be if
they contained run-time checks to detect these spe-

The algorithms just described apply equally well @l cases. _
the APL set membershiprimitive and SHARP ApPL  The methods we developed for detecting and op-
nubsievandlessprimitives, because they can be délmizing searching and sorting primitives on permu-

fined on vector arguments in termsinflexof 3 tation vectors obviously apply just as well to arith-
metic progression vectors (APVs), also known as j-

vectors.[Abr70, Ive73]. However, as the APEX com-
piler does not presently include support for APVs,
less: (~G mem w)/a we are unable to report on this aspect of perfor-

Similarly, the array search and string search prifflance.
itive find (€) can be executed faster on a permuta-
tion vector right argument, because there can or@y Future Work
be a single occurrence of the left argument within

the right argument. Hence, the generated code g&fay predicates give us a tool for simplifying the
stop looking for more matches after it finds the firgl,mpytational complexity of primitive functions, but
one. they are not a complete answer. Some relatively sim-
Finally, indexing an array with a permutation vegy|e problems remain intractable from a formal anal-
tor need not perform array bounds checking with{izis standpoint. For example, consider the computa-
the indexing loop. Instead, a single checkiftlex tjon of a histogram from a vector of integers. This

error can be made by merely examining the shape@fn pe performed in sequential code in linear time:
the permutation vector.

Other optimizations of this type are clearly possi-
ble. In this paper, we merely point out some of the
more obvious ones.

mem: (cew)=(wio)Z 1+0io+Pw
nubsieve: (1pw)=wiw

V r<nbuck histlp nums;i
[1] r<nbuckpPO
[2] :for i :in nums
[3] rlil«r[il+1
30f course, thenubsieveprimitive applied to a permutation [4] :endfor
vectorP is merely( PP ) P1. This results in a special case that

may be interesting for sales and marketing benchmarks, but that ) ]
is rarely, if ever, used in real applications. Yet, when expressed as an obvious APL reduction




of an outer product or one of its siblings, we end up
doing a quadratic amount of work:

+/(1inbucks)e .=nums
((1nbucks)+/°=)%1 0 nums
+/(1nbucks)=°1 0 nums

In general, the set of APL expressions that are of
most interest are those with super-linear computa-
tional complexity in APL, but linear computational
complexity in scalar-oriented languages. These ex-
pressions usually involve inner or outer products,
scans, or reductions, as well as the searching and
sorting primitives discussed here.

One form of expression that is of interest arises
from a class of APL algorithms that perform outer
products, then extract the diagonal from the resulting
array. Such methods perform an immense amount
of needless computation. Demand-based evaluation
can mitigate this waste to some degree, but it is not
always an applicable solution.[Bud88]

A compiler or interpreter can use pattern or phrase
recognition to recognize some expressions of this
class and generate special-case code for them, but
this type of solution is labor-intensive for the com-
piler writer. It also does not provide a general so-
lution to the problem. We seek an approach to re-
ducing computational complexity that is not merely
a collection of special cases, but a general solution
that covers a multitude of similar problems.
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