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Abstract

Excellent application performance should not require tour
de force programming efforts by users. Fortran 88, in an
attempt to bring it from a scalar orientation into an ar-
ray notation, has adopted some of the early concepts of
APL, such as array operations. The introduction of these
ideas is shown to be inadequate in meeting the algorithmic
needs of programmers, in terms of expressiveness, consis-
tency, and conciseness. Comparisons with APL show For-
tran 88 to be a mongrel, neither scalar- nor array-oriented,
unable to achieve the productivity, performance, reliabil-
ity, and maintainability requirements of computer users in
the 1990s.

1 Introduction

Recently, the X3J3 Fortran standards committee proposed
an extended version of FORTRAN, denoted Fortran 88
(aka Fortran 8x aka Fortran 90 – since X3J3 can’t decide
what to call it, I’m sticking with Fortran 88, which is what
[Cam89] calls it.). Fortran 88 is intended to “promote
portability, reliability, maintainability, and efficient exe-
cution of Fortran programs...”[Cam89]. One of the major
additions to Fortran 88 is the inclusion of elemental ar-
ray operations, vector constants, structural and selection

�Originally appeared inSIGPLAN Notices, Volume 13, No. 4, Febru-
ary 1991

verbs, and a few reductions, largely following the design
of early APL systems[Ive62, Int84].

As laudable as the goals of X3J3 may be, Fortran 88
remains a language which is far harder to use effectively
than an applicative array language, such as APL[BB93,
IBM94, IBM94, Int84] or J[HIMW90]1.

The problems with Fortran 88 may be roughly broken
into two major categories:

� Limited expressiveness

� Inconsistency

The fundamental problem with Fortran 88 is that array
extensions have been bolted onto an existing language,
rather than integrated into it. This paper clip and rubber
band approach to design has resulted in a language which
is significantly more complicated than its predecessor, yet
which doesn’t offer the concomitant increases in produc-
tivity or reliability that couldaccompany a total re-design.

The following sections discuss these problems in more
detail, and show how applicative, array-oriented lan-
guages solve them. APL is used for this exposition, be-
cause I am familiar with it, and because it implements the
principles which I propound. Furthermore, because APL

1J is a modern language derived from APL. Among the design prin-
ciples of J which differ from other APL dialects are: operations across
the first (major) axis of arrays, with operation across other axes achieved
via operators such as therank adverb; adherence to a simple and con-
sistent functional syntax; and use of the ASCII character set. APL and J
interpreters are available at www.jsoftware.com
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is available in executable form, the utility of relevant con-
cepts may be tested, rather than merely argued. APL is
not presented as a panacea – APL has its own problems,
which are mentioned in a later section.

Discussion of other aspects of Fortran 88, such as im-
proved facilities for numeric computation, user-defined
data types, and modular definitions, are beyond the scope
of this paper.

2 Limited Expressiveness

Freedom of expression is the matrix...– Palko vs

Connecticut

Expressiveness entails providing a vocabulary from
which sentences can be built that express a thought – part
of an algorithm. Fortran 88 fails to offer a rich vocabu-
lary of words which can be combined to form sentences.
Instead, it provides a collection of already completed sen-
tences, in the form ofintrinsic procedures,2 such as MAT-
MUL and ADJUSTL. This may seem to be a superior ap-
proach, but it in fact limits the creativity of the user of
the language to a phrasebook approach to communication,
and stifles the creation of algorithmic poetry.

This section presents a few specific examples of the
limitations of Fortran 88, and highlights how languages
which appear to do less, in fact do more for the applica-
tion programmer, by offering improved semantics, more
compact and powerful expression, better code reliability,
and the possibility of improved performance.

2.1 Adverbs

Adverbs and adjectives increase our ability to express our-
selves in a natural language, by allowing us to alter the
meaning of nouns and verbs[Ber90c]. Knowingx verbs
andy adverbs in a natural language gives you effective
use ofx«y derived verbs. For example, given the verb
run, I can combine it with adverbs to create a large num-
ber of related or derived verbs, in a consistent manner:run
slowly, run quickly, run cautiously. This provides a vastly
increased vocabulary,withoutrequiring the knowledge of

2Fortran 88 definesintrinsic proceduresto be the set of inquiry func-
tions, elemental functions, transformation functions, and subroutines
which are inherent to the Fortran processor.

all possible verbs. The synergy of verbs and adverbs of-
fers a great expressive power – if you knowx verbs, and
learn just one more adverb, you have really gained the
ability to usex new verbs. In Fortran 88, if you learn one
more intrinsic procedure, you have learned exactly that –
one more intrinsic procedure. The knowledge gained is
not synergistic with previous knowledge.

2.2 Reduction

Reductionsare operations which may be thought of as
placing a specified operation between each subarray of an
array, and evaluating the resulting expression. For exam-
ple, the SUM reduction of1 2 3 might be viewed as
1+2+3 , giving the result6.

Fortran 88 defines seven reductions: SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, and ALL. Fortran
88 views each reduction as unique, with no common
principle or consistent naming convention tying them to-
gether, even though they are are closely related by virtue
of being reductions.

An approach which offers more expressive power and
is easier to teach and learn, is to consider operations such
as + to be verbs, and to introduce an adverb which de-
notes reduction. We can then combineanyverb with the
reduction adverb to create a specific reduction in a simple,
predictable, and consistent manner.

APL denotes reduction by a functionf asf/, thereby
forming SUM as:+/. Figure 1 shows a few elemental
functions and their related reductions in Fortran 88, in
APL, and in J. Compare the consistency and generality
of APL with the haphazard, limited notation in Fortran
88.

Other reductions, such as-/t to compute the alternat-
ing sum,̈ /t to compute the parity, as well as reductions
using user-defined verbs, are not defined in Fortran 88,
but are a natural part of APL. So are a variety of reduc-
tions which appear at first to be meaningless on arrays, but
which are very convenient when applied to two-column
arrays.

From this, it can be seen that one key to effective de-
sign is to provide what at first appears to be less, rather
than more, functionality, and thereby give the user more
freedom for expression through the power of composition
of verbs and adverbs. Although Fortran 88 could presum-
ably obtain this freedom of expression by introducing ad-
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verbs, it’s easier to train users in a new, simpler, language
which doesn’t include the baggage of Fortran’s history.

2.3 Recurrence Relations and the Scan Ad-
verb

Although Fortran 88 provides a few reductions, it does not
provide anyscans. Scans are related to reductions in that
they provide the partial results of the reduction. For exam-
ple, the sum scan (+n) of 3 1 2 4 is3 4 6 10 . Scans
offer considerable expressive and computational power,
particularly with Boolean arguments. In APL, quoted
strings can be removed from a character vector by theex-
clusive oror not equalscan (̈ n) of the Boolean vector
which represents the location of the quotes:

(b¹¨nbût='''')/t
Here is how it works on a text vector:

q
a 'why' is not 'ok'.

tûq=''''
t

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
¨nt

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
t¹¨nt

1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1
(t¹¨nt)/q

a is not .
Recurrence relations have many applications, of which

one of the simplest is computing the remaining balance on
a loan, given an initial balance, and possibly varying pay-
ments and interest rates. In Fortran, this might be written
as:

DO 4 I=2,N} \\
4 BAL(I)=BAL(I-1)*INT(I)+PAY(I)}\\

The indexed references toBAL(I) and BAL(I-1)
make the code difficult to vectorize. Fortran 88’s lack of
scan makes it impossible to express recurrence relations
using Fortran array notation. In APL, the recurrence rela-
tion may be expressed as:

t«+npayßtû«nint
Here is how it works on a loan with principal of $100,

payments of $30, and a 20% interest rate (numbers have
been rounded to fit in one column):

pay
100 ¢30 ¢30 ¢30 ¢30 ¢30 ¢30

int
1.2 1.2 1.2 1.2 1.2 1.2 1.2

«nint
1.2 1.44 1.72 2.07 2.48 2.98 3.58

payß«nint
83 ¢21 ¢17 ¢14 ¢12 ¢10 ¢8

+npayß«nint
83 62 45 31 19 9 0.2

(«nint)«+npayß«nint
100 90 78 64 46 26 0.7
Since the recurrence contains no explicit reference to

adjacent items, the computation can be vectorized or par-
allelized withno changes to the source code. On large
floating point arrays there is a theoretical possibility of
precision loss, but this form has been used by actuaries
for 20 years3 to compute such things as mortality rates, on
arrays of several thousand elements, without problems.

Partitioned reductions and scans are also popular in
APL applications. Partitioning operations break arrays
into smaller arrays of the same rank, along some speci-
fied axis, so that scans, reductions, and other operations
may be applied to each of the smaller ones. A common
example of partitioning operations is computing subtotals
by city, state, and country in a sales report.

Although these capabilities can be performed in par-
allel using techniques similar to the recurrence relation
above, their generality and precision can be improved by
the use of partitioning and tiling adverbs such as thecut
of SHARP APL or J, as will be shown in a later section.

2.4 The Rank Adverb

A number of Fortran 88 intrinsic procedures allow op-
tional specification of values such as DIM or ORDER,
used to control the axis of application of the procedure.
However, the specification of these values, and their ef-
fect, is not consistent, nor does it permit operation along
a specific axis or axes on all functions. For example, DIM
can be used with reductions, but is not permitted to be

3In 1971, before scan was an integral part of APL systems, John
Heckman created user-defined APL scan functions, which ran in two
log n iterations. This algorithm was “discovered” much later by parallel
computer researchers who were apparently ignorant of work done many
years earlier in the APL community.
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used to control the operation of elemental functions or
user-defined functions.

The rank adverb[Ber87, Ive87, I.P87] in APL bears
strong semantic resemblance to DIM, in that it is used to
control the axes across which array operations are per-
formed. However, the definition of the rank adverb is
more expressive:any primitive, derived, or user-defined
function can be applied consistently and independently
upon sub-arrays chosen from the trailing axes of its argu-
ment(s).4 The rank adverb provides the programmer with
considerable power in a very general fashion. A vector
may be added to each column of a matrix by the expres-
sion which selects vectors (rank-1 sub-arrays) from the
matrix and scalars (rank-0 sub-arrays) from the vector:

v+ê0 1 m
For example:

vû10 20 30
v

10 20 30
mû3 2ÒÉ6
m

0 1
2 3
4 5

v+ê0 1 m
10 11
22 23
34 35

Similarly, a matrix may be catenated to each plane of
a tensor by selecting matrices(rank-2) from the left and
from the right:

x,ê2 2 y
Fortran 88 requires DO loops or use of SPREAD or

RESHAPE to achieve this effect on elemental operations,
and probably cannot handle non- elemental operations in
general.

Traditional mathematical notation suffers from simi-
lar problems – Karmarkar [Kar85] wrote a matrix-vector
multiply as an inner product, in which the vector was
represented as a diagonal matrix. With the rank adverb,
it could have been written as a vector-vector operation,

4APL stores arrays in row-major order, unlike Fortran 88. This
means that the subarrays specified by the rank adverb refer to adjacent
(stride-1) items in an array.

which is conceptually a much simpler computation than
inner product:

m«ê1 1 v

2.5 Inner Product

Fortran 88 provides two methods of performing inner
products: DOTPRODUCT and MATMUL. Both perform
a SUM of PRODUCTs on arrays – DOTPRODUCT on
numeric vectors; MATMUL on numeric matrices. They
also perform ANY of ALL on logical arrays, which is
valuable for graph computations such as transitive clo-
sure.

However, it so happens that inner product has the po-
tential for much more than mere SUMs of PRODUCTs. If
the+ and* of the Fortran 77 DO loops for inner product
are replaced by other functions, a whole family of inter-
esting inner products appear, several of which are shown
in Figure 2. Because Fortran 88 only offers one type of
inner product, much generality and expressiveness is lost
– the user is forced to return to the land of DO loops.

APL achieves greater expressiveness by treating inner
product as an adverb, denoted by the dot ”.”. The adverb
accepts two verbs which describe the particular type of
inner product to be performed. For example, the classical
sum of products is written as:

x+.«y
The symbols used by APL to denote this, by them-

selves, are of no greater utility than names such as DOT-
PRODUCT or MATMUL. The key difference lies in the
fact that since inner product is written as an adverb, we
can meaningfully alter its meaning in apredictableand
consistentfashion by using it with other verbs in our vo-
cabulary, increasing our expressiveness.

As an example of the value of expressing inner prod-
uct as an adverb, consider a program which models a
loom, by accepting arguments describing the treadling
pattern, harness connections, and thread patterns to be
used, producing a picture of the resulting fabric. Such
a program, written in BASIC[Hei82], occupied two and
one half pages. An equivalent expression in APL [Ber86]
is:

' *'[(t©.=th)[tr;]]
For example, if executed with these values:
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tû4 2Ò0 3 2 3 1 2 0 1
thû1 40Ò0 1 2 3
trû 46Ò0 1 2 3 3 2 1

the result could be plotted as:

The key to the compact expression of this algorithm
lies in the use of a variant of inner product,©.=, which
is obvious to a user of APL, yet uncommon, and certainly
not a variant which one would expect to find in a Fortran
library.

2.6 Matrix Transpose

Fortran 88 defines matrix transpose only on arrays of rank
2. This needlessly restricts the expressiveness of matrix
transpose. Higher dimensional transposes are of signifi-
cant value in common applications. For example, a suit-
able rank-4 transpose, combined with a few reshapes, al-
lows a rank-3 array of mailing labelsm, each plane repre-
senting one label, to be printedn-up:

sû((«/2ÒÒm)ßn),n«¢1ÙÒm
sÒ0 2 1 3ô(((1ÒÒm)ßn),n,1ÕÒm)Òm

The first line determines the result shape. The second
inserts an extra axis intol, performs the rank-4 trans-
pose to bring the pieces into proper alignment, and then
reshapes the result to its final form.

2.7 Array Notation

In a critique of Fortran 88, Curtis[Smi88] says:

An important class of loops not expressible in
array syntax is exemplified by the Hilbert ma-
trix. (The basic problem is that) DO loop in-
dices are used as part of the calculation as well
as subscripts for arrays.

APL offers a number of ways to express a Hilbert ma-
trix using array expressions. Here are two simple ones,
one exploiting outer product, and the other using the gen-
eralized scalar extension concept of function rank:

1ß(Én)Ê.+¢1+Én
1ß(Én)+ê1 0,¢1+Én

Here is an example of a Hilbert generator in action:
É3

1 2 3
(¢1+É3)

0 1 2
(¢1+É3)Ê.+É3

1 2 3
2 3 4
3 4 5

1ß(¢1+É3)Ê.+É3
1 0.5 0.3333
0.5 0.3333 0.25
0.3333 0.25 0.2

Since the expression is purely functional, the computa-
tion can be vectorized or parallelized across an arbitrary
number of processors, without requiringany changes
to the expression. As proof of the viability of this
approach, Dr. Hans-Peter Meinzer recently noted at
APL90[MMS90] that hisunalteredAPL tomography vi-
sualization programs were able to drive an IBM 3090 vec-
tor facility to several hours of use per month, whereas his
colleagues, after having made substantial changes to their
Fortran code, were still unable to achieve more than some
seconds per month of vector use.

2.8 Vector-valued subcripts

Fortran 88 prohibits the use of vector-valued subscripts on
the left side of assignment. This places a severe restriction
on the utility of subscripting, limiting the expressiveness
of the language. According to A. Marusak, the restriction
arose from “confusion in many to one stores”[Smi88].

Interestingly enough, the ISO APL Standards Work-
ing Group went through the same angst some years ago.
Virtually all extant APL implementations operated iden-
tically in the presence of duplicate subscripts: the value
stored corresponded to the last occurence of the subscript.
For example, the execution of:
x[1 1 1]û2 3 4
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would result in a value of4 in x[1]. A number of
delegates wished to make this behavior an error, so that
parallel machines might legally implement it in a non-
deterministic form. Since the ISO APL Standard permits
a conforming implementation to turn an error into some
other behavior, both definitions would then be legal. In
the end, the decision was based on the guiding principle
of the Working Group – to enshrine existing industry prac-
tice – and the definition stood as in the example above.

2.9 ADJUSTL and ADJUSTR

The Fortran 88 intrinsic procedures ADJUSTL and AD-
JUSTR are defined on character strings, and have the ef-
fect of deleting leading or trailing blanks, respectively,
from their arguments, padding the vacated spaces with
blanks. There are a number of problems with the defi-
nitions of these procedures, all of which result from their
being overspecified:

� They are defined on characters only. Shifting of log-
ical or numeric arrays is not permitted.

� They are defined on rank-1 objects (lists) only. Shift-
ing of matrices is not permitted.

� They presume the desired character to search for is
non-blank. Searching for other characters, or sets of
characters, is forbidden.

To understand why the characteristics of ADJUSTL re-
strict expressiveness, let’s analyze a version of ADJUSTL
written in APL. We observe that, since it shifts in as many
blanks as it shifts out, one way to write it is torotate the
string up to the first non-blank:

adjl:(+/^n×=' ')÷×

Here is howadjl works on a text matrix:

t
l add x,y

st x,z
jmp l

t=' '
0 1 1 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1 1 1

^nt=' '
0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0

+/^nt=' '
0 3 2

(+/^nt=' ')÷t
l add x,y
st x,z
jmp l

A comparison of ADJUSTL andadjl reveals the fol-
lowing:

� ADJUSTL only works on strings.adjl works on
arrays ofany rank. For example, given a matrix of
text as an argument, it will left-adjust each row of the
argument to the first non-blank ineach row, without
requiring a loop.

� ADJUSTL is restricted to search only for the first
non-blank. Inadjl, the character to be searched for
is explicitly specified in the expression, and could
be changed if we wished to search for something
else. The= makes it clear that we are searching
for the presence of the blank, rather than its absence.
We could, if we desired, instead search for the first
non-blank. This is useful in applications such as an
assembler. Withrtb as a companion which left-
adjusts to the next blank, we can analyze an entire
source program in parallel:

rtb:(+/^n×¨' ')÷×

or

rtb:(×Éê1 ' ')÷×

The assembler would process all labels, then use
adjl rtb text to rotate the labels out of the
way, and rotate the op codes to the first column. Op
codes, operands, and comments would be handled
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similarly. Thus, the flexibility of being able to spec-
ify the character being searched for, or not searched
for, and the ability to operate on arrays, are both seen
to have much more power than ADJUSTL.

� Explicit specification offers the ability to operate on
non-character arguments. An expression to drop
leading zeros in an argument is:

dl1:(+/^n×=0)Õ×

Note the similarity ofdl1 to rtb. A key design
principle in APL is to provide generalized primitives
which act in the same way on all data types, even if
the result is primitives which at first appear to be less
powerful in specific situations.

A few other capabilities which are trivially achieved
with similar functions include:

� Shifting left/right to the first/last occurence of any of
a set of interesting values.

� Shifting left/right to the first/last non-occurence of
any of a set of interesting values.

� Shifting along different axes.

� Padding with values other than blank.

None of these are possible using ADJUSTL or AD-
JUSTR.

2.10 Boolean Poverty and Data type Ab-
straction

Fortran 88 treats logical (Boolean) data as a poor cousin,
permitted only on the periphery of computation.

Booleans may be used to control computations, in the
form of the optional argument MASK=, and are permissi-
ble in a few intrinsic procedures (such as COUNT, ANY,
and ALL) but they may not be used as numerics in compu-
tation. This leads to needless complication, restricts our
ability to express algorithms in a clear and concise man-
ner, and has a negative impact on application performance
and space requirements.

The inability to mix Booleans and numerics in compu-
tation leads to needless complexity in application code.
The ISING spin model in Appendix C of the Fortran 88

Draft Standard is complicated and slowed by the need to
convert a Boolean array to integers on each iteration of
the inner loop, merely because of the lack of capability to
perform arithmetic and shifts on Booleans. APL permits
direct computation on Booleans as numerics, allowing the
12 lines of the Fortran 88 inner loop of the ISING spin
model to be written as:

cû(1áê1 i)+(1áê2 i)+1áê3 i
cû(¢1áê1 i)+(¢1áê2 i)+(¢1áê3 i)+c
cûc+(~i)«6-c
iûi¨p[c]¦rand i

In the above, the first three elements ofp contain 1,
andrand generates an array of random probabilities of
the same shape as its argument. The Boolean ISING ar-
ray i is used directly in rotation, addition, negation, and
exclusive or. The computation more closely reflects the
problem, and the nugatory Fortran 88 computations in-
volving the array ONES do not appear.

The first two lines of the above computation ofc could
also have been written in APL with acut adverb[Ive87],
albeit using a truncated, rather than cylindrical universe,
as:

(2 3Ò1 1 1 3 3 3) 3ê(+/ê,ê^¡s) i
The cut adverb expression(2 3Ò1 1 1 3 3 3)ê

performs an overlapping tesselation of the matrix argu-
ment into tiles of shape3 3 3, with beginning points
for each tile which are1 1 1 apart. The function
+/ê,ê^¡s is applied to each of thetiles. It computes
the sum (+/) of the ravel (,) of eachtile after anding (̂ )
it with a Boolean stencil array,s, of shape3 3 3 which
isolates the six neighbors of interest. The compositions
ê are used to pipeline the results of each independenttile
computation though the three functions sum, ravel, and. A
similar expression can be used to perform convolutions.

APL’s expressive power on logical operations stems
from treating Boolean .FALSE. and .TRUE. as the num-
bers0 and1, typically represented as one bit per element.
Any verb which may accept numbers accepts Booleans.
Relational verbs produce Boolean arrays as results. This
permits Booleans to be first-class citizens in the compu-
tational world. In APL, instead of IF/THEN/ELSE and
WHERE constructs, one often sees expressions such as:
a+5«a>10, which adds5 to the elements ofa which
are greater than10. This simplifies compilers and in-
terpreters, removes pipeline bottlenecks, and reflects a
SIMD world view.
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Fortran 88 forbids the application of relational intrin-
sic operations, such asgreater than, on logical data. This
severely limits the expressiveness of computations upon
Booleans, which are powerful ways to control array oper-
ations. APL treats relational operations on Booleans ex-
actly the same as relational operations on other numeric
types, increasing our expressive power, and making cer-
tain set-related computations highly efficient. Support for
relationals on Booleans completes the set of 16 dyadic
Boolean functions.

2.11 String Operations

The Fortran 88 SCAN intrinsic procedure is defined to
“scan a string for a character in a set of characters”.
SCAN(’FORTRAN’,’TR’) returns 3, just as the APL ex-
pressionÄ/'fortran'É'tr' would do. However,
SCAN is overspecified – it doestoo muchwork: In per-
forming the minimum reduction (Ä/) on 3 4 (the result of
'fortran'É'tr'), SCAN discards potentially useful
information. The power of SCAN would be enhanced if it
did less, and let the user invoke MINVAL when it was de-
sired. As with INDEX, the user will often end up writing
code to mimic 90% of SCAN, when a problem doesn’t ex-
actly fit the Procrustean bed of SCAN’s definition. SCAN
also shares the same limitations as INDEX – not defined
on numerics, nor on arrays.

APL’s findverb (å)is defined on all array types, of any
rank. Find may be viewed as a string search primitive on
character vectors, or as a stenciling operation on matri-
ces, for image analysis. Find returns a Boolean array of
the same shape as one argument, with 1’s in any position
where the upper-left corner of that subarray matches the
other argument. In Fortran 88, it appears that if you are
interested in finding subarrays which are not both vectors
and characters, you’ll have to write your own code to do
it.

VERIFY has similar problems. VERIFY is defined to
“verify that a set of characters contains all the characters
in a string”. It returns 0 if the string characters all belong
to the set. Otherwise, it returns the index into the string
of the first character not in the set. As with the above pro-
cedures, it is neither defined on arrays nor on numerics,
needlessly limiting the utility of the procedure, and mak-
ing life harder for application writers who could otherwise
benefit from its use.

APL’s cognate of VERIFY is set membership:xÅs re-
turns a Boolean of the same shape asx, containing a 1 at
each location which corresponds to an element ofxwhich
occurs ins. A number of useful variants are obtained
with a few more verbs. Removal of a subset of elements
from a list (such as removal of blanks) may be done with:
(~xÅs)/x. Assertion that all elements are contained in
the set is:^/,xÅs. The indices of the elements which
are not in the set is found by:(~xÅs)/ÉÒx. An approx-
imate equivalent to VERIFY is:(~xÅs)É1. Finally, re-
moving multiple blanks from a string might be performed
with one of the following expressions:

(t°¢1Õ0,tûsÅ' ')/s
(~' 'ås)/s

INDEX returns the starting position of a substring
within a string. As with SCAN, the APLfind verb per-
forms the same function, yet offers significantly more
generality, operating on any data type, and on arrays of
any rank. Hence, it is natural for applications such as
computer-aided vision, image processing, text editing,
and so forth.

3 Language Inconsistencies

With consistency a great soul has simply noth-
ing to do.– Emerson

Consistency in a notation is critical to its clarity.
Consistency implies fewer rules than inconsistency.

Occam’s razor should be sufficient reason to keep lan-
guage designers as far away as possible from inconsistent
rules. It often works. However, when a system already
has an inconsistency of one sort, often initially introduced
for reasons of “user convenience”, it’s thought reasonable
to add one more inconsistency of the same sort – for rea-
sons of consistency, of course! This is a big mistake –
although computers can deal with any set of rules,peo-
pleare simply not built to deal with the large sets of rules
which accompany inconsistencies.

Consistency produces several other desirable effects:

� The resulting language is easy to teach and easy to
learn.

� The notation can enhance and encourage creativity.
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� The user is not hobbled by the compiler writer’s
ideas of what might constitute a “useful” intrinsic.

� Program faults and bugs are reduced, because the op-
portunity for incorrect comprehension is reduced.

� Performance can be improved – new optimization or
parallelization techniques which can be applied to
one construct often then apply in a uniform manner
to all constructs.

� Compilers and interpreters are easier to construct.

3.1 Intrinsic Procedure Names

Fortran 88 offers the programmer no assistance in pre-
dicting the names, behavior, or existence of many facili-
ties. For example, SUM performs a sum reduction of a
numeric array. COUNT performs a sum reduction of a
logical array, if .FALSE. and .TRUE. are viewed as the
values 0 and 1, respectively. In spite of their similarity,
there is no way for someone who knows SUM topredict
the name of the very similar reduction COUNT. This lack
of consistency makes the language hard to teach, and hard
to use.

Figure 1 shows a comparison table, showing some sim-
ple expressions in Fortran 88, APL, and J for elemental
operations, and for their corresponding reductions on vec-
tors. Note the lack of correspondence between the Fortran
88 elemental function name, and its associated reduction,
and compare it to the rigorous consistency and simplicity
of APL. Note also the lack of consistency in the Fortran
elemental function syntax, which appears to depend not
on the function type, but on some other, unstated, crite-
rion.

In Fortran 88, a user seeking to perform anf reduction
must either memorize all the Fortran 88 intrinsic proce-
dures, or must search the entire reference manual to see if
a suitable intrinsic exists. Knowledge off is of no help in
reducing the scope of the search, because the name of the
intrinsic is not directly related tof.

In APL, by contrast, all reductions are written asf/,
regardless of the verbf being used. In a sense, the user
creates the required intrinsic procedure on the spot, as
needed. An alternate view is that the intrinsic procedures
follow a rigorously consistent naming convention, and the
user merely composes the name of the desired intrinsic.

Of course, this only works if the intrinsics also have rig-
orously consistent semantics, as they are in APL.

Many operating systems have similar problems – large
command sets and libraries, chock full of wonderful ser-
vices – if you can find the one you need. It would be
interesting to look at operating systems, and see if we can
bring their definitions and behavior into the world of con-
sistency.

3.2 Consistent Semantics

Fortran 88 has overly complicated rules for array oper-
ations. Consider inner product: the intrinsic procedure
which must be used depends on the rank of the arguments.
Figures 3 and 4 graphically display the kinds of inconsis-
tency which is forced upon the Fortran 88 user. What gain
is made by making the user remember two distinct library
routines, when one would suffice if it were designed prop-
erly?

Fortran 88’s inability to handle arrays of rank greater
than two is inexcusable. As a trivial example of the value
of handling arrays of rank greater than two, consider a 2-d
graphics application in which a tensor of linear transform
matrices is to be multiplied by another transform. This
requires a DO loop around a MATMUL call because of
the restriction to arrays of rank two or less. In APL, it
is merelyt+.«m, because APL extends systematically to
arrays of arbitrary rank.

Another area where Fortran 88 is inconsistent is in
the specification of controlling parameters. For instance,
DIM has to be an integer lying within the rank of the argu-
ment – except when it doesn’t – as in SPREAD. This in-
consistency leads to bugs and slower development cycles,
and is harder to learn than a consistent notation. Further-
more, these controlling parameters are only permitted in
a specified list of intrinsic procedures, and are not defined
on elemental functions, nor on user-defined functions. By
contrast, the APL rank adverb provides identical capabil-
ities in a completely general and consistent fashion.

3.3 Catenation

Fortran 88 treats catenation in an inconsistent manner:
two character strings S1 and S2 may be catenated by the
expression S1//S2, but there is no provision for catenat-
ing arrays or non-character data types, forcing users to
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write different code for the same operation, because the
argument types differ or because they are not vectors. By
contrast, APL allows any two arrays, regardless of type or
rank, to be catenated along a specific axis using expres-
sions such as:

First Last Axis k from end
s1¬s2 s1,s2 s1¬êk s2

APL’s approach is simple, consistent, and more gen-
eral. APL provides a far richer set of capabilities, in a
completely consistent manner, making it easy to learn and
easy to compile and execute efficiently.

3.4 Inconsistent Treatment of Character
Data

Fortran 88’s lack of support for variable size character
strings or arrays is puzzling. The facilities which are pro-
vided seem stunted and non-intuitive, but this may arise
from requirements for compatibility with older dialects of
the language. In any event, it makes the language difficult
to use for text applications such as editors, compilers, and
so on. In APL, character arrays are treated on a par with
numeric arrays – all structural and selection verbs operate
in a semantically identical manner on all array types.

3.5 Performance and Parallelism

Although at first glance, the inconsistencies above would
seem to simplify the task of producing efficient code, the
converse is true:

Fortran 88 may produce efficient code for arrays of rank
0, 1, and 2, but that generated for arrays of rank 3 or
higher suffers from the same problems as those of FOR-
TRAN 77 – DO Loops are still required.

Of course, one could embed a MATMUL call in the
inner loop, but that would remain sub-optimal:

� Only the newest compilers vectorize or optimize
over function calls.

� The semantic content of the algorithm is obscured,
making the program harder to understand.

� Code complexity and volume grows, increasing the
probability of introducing an error, and making
maintenance or enhancement more difficult.

� Parallelization which is trivially exploited in the APL
expressionb+.«c is only applicable in a granular
fashion in most FORTRAN compilers – on a DO
basis, or within the MATMUL. APL can trivially
distribute the entire computation over as many pro-
cessors as are available, because it possesses more
knowledge about the total computation than FOR-
TRAN does.

In SHARP APL[Ber81] we took advantage of
APL’s consistent notation to implement the CDC Star
Algorithm[Gri73] on inner products of many types, on
arrays of any rank. The Star Algorithm reduces storage
traffic, by re-ordering the problem so that each left argu-
ment element is only fetched once, and applied to the right
argument and result in stride-1 fashion (along the ravel,
in APL terms), scalar-vector. Similar knowledge about
data types and functions allowed us to design a version of
Boolean inner product which exploited the minimal, 32-
bit parallelism available in the System/360, achieving a
speedup factor of 1000 over the old algorithm. It is doubt-
ful if most application programmers would, or should, on
a routine basis, subject themselves to the level of coding
complexity this required, but it came for free to all users
of that APL system.

Furthermore, we introduced code which made loop or-
dering, prefetch, and other run-time decisions based on
the actual shapes and types of the arrays involved, and the
working storage available at the time, which meant that
even simple matrix products ran about 2.5-3 times faster
than VS FORTRAN.

3.6 Storage Management

Fortran 88 introduced ALLOCATE, a primitive form of
explicit storage management. FORTRAN 77 doesn’t sup-
port dynamic storage management, providing static stor-
age only. The semantics of ALLOCATE associate a spec-
ified name with the newly-allocated storage for an array
of specified shape. For example, ALLOCATE (X(N)) al-
locates an N-element list, giving it the name X.

The problems with names and ALLOCATE are the fol-
lowing:

� Inability to create recursive data structures, lists, and
trees by allocating successive nodes of the structures.
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� Inability to easily alter the size of an array.

� Bolting the name into the semantics of ALLOCATE
violates a major principle of functional program-
ming.

Consider an array whose elements are formed by suc-
cessive catenations, such as a queue. FORTRAN 77
would require static allocation of an array large enough to
hold the “largest possible” result, a scalar indicating the
current number of entries in the array, and, for the faint-
hearted, explicit code to perform array bounds checking
in case of array overflow.

In Fortran 88, one obvious approach would be to allo-
cate an empty array, then catenate to it. Catenation makes
the array larger, and therefore, a new array must be al-
located. But Fortran 88 prohibits allocation of a new X
when X is already allocated, so typical code for catena-
tion might have to include a temporary array, and look
like this:

ALLOCATE (TEMP((SIZE(N)+SIZE(X)))
TEMP = X // N
DEALLOCATE (X)
ALLOCATE (X(SIZE(TEMP)))
X = TEMP
DEALLOCATE (TEMP)

In APL, the same expression would be written as:
xûx,n

Under the covers, APL is probably implicitly perform-
ing the same operations as the above Fortran 88 code is
doing explicitly, but:

� The workis happening under the covers. Hence, the
programmer need not be concerned with the details
of how it is implemented. Furthermore, if a compiler
writer is able to improve the algorithm used, the code
will run better, with no changes at the source level.

� APL is fewer characters to type, therefore less work
to write. In the above example, there are more lines
of Fortran 88 code than there are characters of APL!
The conciseness of APL expresses the algorithm in a
“chunk” of such size that our brains can treat it as a
single unit.

� Assuming that error rates are proportional to code
volume, the APL expression is more likely to be cor-

rect than Fortran 88. The conciseness gives the ex-
pression a clarity which is masked in Fortran 88. The
APL expression can be seen at a glance to be correct,
whereas the Fortran 88 code is opaque, and can mask
errors in the code. For example, the first line of the
example has unbalanced parentheses.

� Increased semantic content makes APL easier to op-
timize than Fortran 88. The APL expression is a sin-
gle verb – catenation, expressed by the comma – and
a single assignment whose target is the same as one
argument to catenate.

4 Portability

Fortran 88 may be viewed as a high-level assembler
language. As such, it tempts programmers to make
architecture-specific optimizations to code in order to
improve performance on a specific hardware platform.
Worse yet, this approach is even encouraged by the sup-
pliers of hardware and software, who suggest that:

This activity of rewriting a program to enable
vector computation is an important and produc-
tive activity[DSK85].

In many cases, a loop... should be replaced with
a call to an optimized routine in the $SCILIB
library[CRA86].

In order to obtain high performance from the
IBM 3090 Vector Facility, we must modify
the way in which we construct our numerical
method programs[Sam88].

These people ignore the problems engendered by tin-
kering code in order to make it run better on one specific
machine:

� Reduced portability

� Reduced maintainability.

� Reduced algorithmic clarity.

If they were using a language which was suitable to
the problem, the performance issues could, by and large,
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be left to the compiler writers to solve, as they should
be, rather than placing afutureburden on the application
writer who may late have to move the application to yet
another computing platform.

Moving within an architecture (scalar to vector on the
same machine) is bad, but movingbetweenarchitectures
can be a nightmare:

A researcher at a U.S national laboratory has a very
large model of the earth’s climate, originally written in
FORTRAN for a Cray supercomputer. The model will
require several compute-years using the fastest currently
available machines. This restricts the researcher to run-
ning the model in segments on whatever machine is avail-
able in any available time slots. Recently, ahypercube-
architected machine became available for use as well as
the Cray. The Cray has a few very high speed proces-
sors. By contrast, the hypercube machine is a moder-
ately parallel machine, with 1024 medium speed proces-
sors. Fortran 88 coding techniques to achieve maximum
efficiency on the two architectures are radically different,
and at odds witheach other. This leaves the researcher in
a quandary: Either suffer poor performance on one of the
two machines involved, or write and maintain two distinct
models, coded specifically for each architecture.

The first approach negates the effectiveness of using
a supercomputer; the second requires significantly more
human effort to be placed on program maintenance and
development. Furthermore, the second technique is much
more liable to result in the introduction of program faults.
How can the two models be proven to be identical?

Software vendors who wish to have their products run
efficiently on a wide range of architectures have this prob-
lem in spades.

Writing at a high semantic level hides these dependen-
cies, and yet offers a good degree of performance, by giv-
ing the compiler more information to work with regarding
the actual computation to be performed.

5 Conciseness

Brevity facilitates reasoning[Ive79].

The ability to express an algorithm in a concise,
straightforward manner is key to effective use of comput-
ers – coding is faster, comprehension is easier, and the

probability of program faults is reduced. Conciseness is
beneficial to compilers, in terms of the amount of infor-
mation available for making decisions about code gener-
ation, optimization, and scheduling on parallel systems.
Fortran 88’s verbosity makes it a weak contender for an
effective programming tool in the 1990’s.

Verbose programming languages create problems for
compilers. Basic blocks – the straight-line pieces of code
which are the basis for optimizers, tend to be small, lim-
iting the efficacy of optimization. Concise languages, by
their very nature, create larger basic blocks, and, by hid-
ing the details of the computation, give the compiler a leg
up.

Verbose languages are also a maintenance nightmare.
Compare the loom model previously shown to its equiva-
lent in BASIC. Think about how hard it would be to ex-
tend or change it, or about what changes might be made to
improve the algorithm. Conciseness improves our ability
to understand what a program does – the key to correct
maintenance.

6 Summary

The utility of Fortran 88 is limited by the imagination
of the language designer, rather than by the imagination
of the user. Consistently defined, array-oriented, concise
adverbial languages offer significantly greater flexibility,
ease of maintenance, and power of expression.5

These languages also allow effective exploitation of
SIMD, MIMD, and vector hardware. They enhance our
thought processes, by making it easier to think about al-
gorithms, without having to think about computers. For-
tran 88 is a poor tool of thought, and remains a language
which cannot fully exploit array thinking, nor the multi-
computers which are now appearing on the market.

7 If You’re So Smart...

If APL is so wonderful, why hasn’t it become a more pop-
ular computing language? Looking back, there are a num-
ber of reasons for this:

5My paperErgonomics and Language Design, in press, goes into
more detail on these issues, but largely ignores Fortran 88.
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� Character set

� Poor performance

� Lack of iterative control structures

� Isolation of environment

� Storage requirements.

The APL character set represented a major psychologi-
cal and technological barrier to the spread of APL to new
computing platforms in the last two decades. Recently,
the availability of bit-mapped displays, allowing the dis-
play of meaningful symbols such as garbage cans, has re-
moved much of this barrier. However, many text editors
and other utilities still limit the user to the 128 element
ASCII character set, so the barrier still exists. For this
reason, new dialects of APL6 have eliminated the require-
ment for special character sets.

A second barrier was performance, caused partially by
the interpretive overhead of APL systems. Compilers
[Ber90b, BBJM90, Bud83, CNS89, Wie85] for APL di-
alects are starting to appear, and changes in the APL lan-
guage are occuring – changes such as adoption of lexical
scoping rules, which dramatically simplify compilation
and improve execution speed, but which make little dif-
ference in the writing of practical applications. Perform-
ance is very promising, especially considering the relative
amount of work which has gone into these compilers com-
pared to Fortran compilers.

Although the adverbs of APL perform much of the
work of traditional control structures such as DO, APL
is missing a construct corresponding to WHILE, which
is desirable for applications which are inherently itera-
tive. Such constructs also simplify the job of optimiz-
ing code, and make program maintenance easier. New
dialects of APL are beginning to deal with these issues.
IF/THEN/ELSE, and CASE statements can be dealt with
directly viafunction arrays[Ber84].

The isolation of APL made it difficult to combine pro-
grams written in APL with those written in other lan-
guages. Accessing data located outside the workspace
was difficult. The workspace concept, although now com-
mon in other environments, was too effective in isolating
people from the machine – they could not use the tools

6See Appendix A: Examples in APL and J.

they were familiar with, such as text editors with APL.
One goal of J and compiler efforts is to integrate APL into
other environments as just another computing tool, rather
than a poor cousin or arrogant uncle.

Finally, the storage requirements for an APL interpreter
were rather large on the computers of the 1970s and 1980s
– running the smallest application required several hun-
dred kilobytes of storage. This is obviously no longer a
serious problem, given today’s storage costs and densi-
ties.

APL language designers and implementors have real-
ized that APL cannot be successful in a vacuum, and that
a language must be totally integrated into the computing
environment. APL language, interpreter, and compiler de-
sign work is being directed at the above problems, and
new dialects are expected to compete favorably with other
languages, particularly in the realm of massively parallel
computers, where the expressive power of APL far ex-
ceeds that of other languages.
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Fortran 88 APL J
Elemental Reduction Elemental Reduction Elemental Reduction
B+C SUM(C) b+c +/c b+c +/c
B-C DO loops b-c -/c b-c -/c
B*C PRODUCT(C) b«c «/c b*c */c
MAX(B,C) MAXVAL(C) bÓc Ó/c b>.c >./c
B .AND. C ALL(C) b^c ^/c b*.c *./c
IF stmts COUNT(C) b+c +/c b+c +/c

Figure 1: Elemental functions and their associated reductions.

Application APL J
Associative search x^.=y x *./..=y
Inverted associative search x©.¨y x+./.. ~:y
Minima of residues for primes xÄ.Íy x<./..|y
Transitive closure step on Booleansy©.^ôy y+./..*.y
Minima of maxima xÄ.Óy x<./..>.y

Figure 2: APL and J variants on inner product.

Fortran 88 APL J
Boolean Integer Boolean Integer Boolean Integer
ALL(B) PRODUCT(b) ^/b ^/b *./b *./b
COUNT(B) SUM(B) +/b +/b +/b +/b
ANY(B) MAXVAL(B) Ó/b or ©/b Ó/b >./b or +./b >./b

Figure 3: Inconsistencies in intrinsic procedures on Boolean-valued data.
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Left Right Fortran 88 APL J
Rank Rank
0 0 A*B a«b or a*b or

a+.«b a+/..*b
0 1 DOTPRODUCT((/A/),B) a+.«b a+/..*b
1 1 DOTPRODUCT(A,B) a+.«b a+/..*b
1 2 MATMUL(A,B) a+.«b a+/..*b
2 1 MATMUL(A,B) a+.«b a+/..*b
2 2 MATMUL(A,B) a+.«b a+/..*b
n>2 n>2 n+1 DO LOOPS a+.«b a+/..*b

Figure 4: Inner products for various argument ranks.

A Examples in APL and J

Quoted string removal (b¹¨nbût='''')/t (b+: ~:/ nb=.t=’’’’)#t
Recurrence Relation t«+npayßtû«nint t*+/ npay%t=.*/ nint
Vector+matrix row x+ê1 1 y x+"1 1 y
Vector+matrix column x+ê0 1 y x+"0 1 y
Matrix times tensor plane m«ê2 1 v m*"2 1 v
Inner product x+.«y x+/..*y
Loom model (' *'[t©.=th])[tr;] tr f|:(t+./..="2 0 th) f’ *’
Mailing labels n-up sû((«/2ÒÒm)ßn),n«¢1ÙÒm s=.((*/2$$m)%n),n* 1f.$m

tû(((1ÒÒm)ßn),n,1ÕÒm)Òm t=.(((1$$m)%n),n,1 g.$m)$m
sÒ0 2 1 3ôt s$0 2 1 3|:t

Hilbert Matrix 1 1ß(Én)Ê.+¢1+Én 1%(i.n)+/ 1+i.n
Hilbert Matrix 2 1ß(Én)+ê1 0,¢1+Én 1%(i.n)+"1 0 , 1+i.n
ADJUSTL adjl:(+/^n×=' ')÷× adjl:(+/*./ ny.=’ ’)|. y.
Skip to next blank 1 rtb:(+/^n×¨' ')÷× rtb:(+/*./ ny. ~:’ ’)|."1 y.
Skip to next blank 2 rtb:(×Éê1 ' ')÷× rtb:(y.i."1 ’ ’)|."1 y.
Delete leading zeros dl1:(+/^n×=0)Õ× dl1:(+/*./ ny.=0) g.y.
Remove multiple blanks 1 (t°¢1Õ0,tûsÅ' ')/s (t*: 1g.0,t=.s e.’ ’)#s
Remove multiple blanks 2 (~' 'ås)/s (-.’ ’E.s)#s
Catenate first axis x¬y x,y
Catenate last axis x,y x,"1 y
Catenate axis k from end x¬êk y x,"k y
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