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Abstract Keywords

Dynamic programming is used infrequently by APdynamic programming, flow control structures, con-
programmers, in spite of its ability to reduce thol structures, performance, optimization, APL, J,
computational effort required to solve many prolpuzzles, interpreter overhead.

lems. This paper uses tigtring Shufflgroblem as

the basis for a comparison of brute force, recursivg,
and dynamic programming algorithms. Simple ai
gorithms for each of these approaches are designed .. . . .
and evaluated, then individuglljly optimized and ?3-%6 String Shuffieproblem is a simple puzzle that

. . will serve to demonstrate why brute force solutions,
evaluated, to show the benefits of dynamic prograr: . .
ming although often elegant and simple to express in APL,

The dvnamic proaramming algorithm is then remay be impractical for solving many problems be-
y prog g alg .. cause of the large computational resources they re-

cast to use flow control structures recently 'mr%'uire The use of recursion, dynamic programming

i * _ " 1 y

duced into ISI J and APL*PLUS llI. Use of con and flow control structures permits solutions to the

trol structures in conjunction with dynamic programs o problems in far shorter times.

ming results in orders of magnitude performance im-The string shuffle problem may be stated as:
provement over brute force and naive recursive al%)- y '

. iven rings and tw i i j
rithms. APL*PLUS Il control structures are showry. - ast_ ea O.It 0 substringsi ands j, such

. ) that (Ps)=Psi, sj, cans be constructed by alter-
to provide a performance improvement of up to 30|4°atel icking zero or more leading characters from
over GOTO-based loops. yp g g

the remaining parts ofi andsj? If so, thens is

*This paper originally appeared in the ACM SIGAPL ApLoaid toshufflethe substrings.
Conference Proceedings. [Ber95] For example, the stringNUTs! ' shuffles sub-
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strings 'NT' and 'Us!', but not 'NT' and 101 0 0/'Nuts!' a Generate si

'U!S', because of the restriction on picking char- Nt

acters from the front of each substring. Avarianton 0 1 0 1 1/'Nuts!' a Generate sj

the problem aski how many ways can the string be us!

constructed?but we shall concentrate on the simpler

decision problem. The compression technique reduces the string
We will first consider three basic APL algorithmshuffle problem to that of generating the complete

for solving the string shuffle problem. The alset of possible compression vectors. Since we know

gorithms will then be tuned to improve their petthe compression vector must hagei 1s in it, the

formance. Finally, the dynamic programming algdroblemis easy. First, generate all possible compres-

rithm, recast to use the flow control structures ré&ion vectors fos. This can be done in APL and J as

cently made available in Iverson Software’s ISI J arfallows:

Manugistics” APL*PLUS III, will be compared to  ap|: i<y((pg)P2)T12%0s

the GOTO-based algorithm. The approaches to be j. i—# 2 A#X

examined are;
Then discard those that do not harei 1s in

¢ Brute force them:
o Naive and intelligent recursion APL: j<((Psi)=+/i)#41
J: = ((#si)=+/"1 )i

¢ Dynamic programming
From here on, things get easy: Usdo gener-

2  The Brute Force Solution ate all potentiaki lists from s, use~j to generate
all potentialsj lists, then match each pair of those

One brute force solution is to interleave the suBgainstsi,sj. In the defined verb presented as
strings in all possible ways, then determine if afyPL in Figure 1 and as J in Figure 2, this is done
of them match the string. The hard part is to ﬁgwty turning the two generated sets of lists into_tables,
out how to generate all the possible combinations§€n catenating the two tables. An alternative ap-
the substrings. proach would be to use indexing to generate potential
We gain insight into the problem by viewing i€ lists, then match them against This approach is
backwards: How can the string be broken up infower and more space-hungry, as it requires genera-
two substrings of the proper length, while preserUO” and use of integer index sets instead of Boolean
ing the required character ordering? Compressi&GRMPression vectors.
of course! A suitable compression vectot;, with ~ We define two utility functions to simplify read-
as many 1s in it as there are elementsin can be ability and porting across APL systenisis disclose
used to extract a substring frasof the same length OF Open;C is catenate with enclosevhich encloses
assi. Similarly, the logical negation ofv can be Or boxes each of its arguments, then catenates those
used to extract a substring of the same length-as results to form a two-element list:
If any pairs of these extracted substrings match 1Al code in this paper uses index origin zero. The J code

andsj, then we have found a solution to the stringntains extra white space to make reading easier for those who
shuffle problem. For example: are not familiar with J.




ISIAPL APL*PLUS I | J
D:>y D:>oy D=>
Cix,o<y | C:(ex),cy | C=8&<

r<s SBF y;si;sj;i

a Brute force string shuffle
A s 1s string to generate

A Substrings

si<«D y[0] ¢ s3j<«D y[1]

SBF =.3:0

: NB. x. is string to match

si =. >0 {y. NB. Substrings
sj=>1 {vy.

NB. All subsets

= #0002 A # X

j = ((#si)=+"1 i)#i NB. mask
ss = (# x.),"1 (-))#x.

NB. Build & catenate substrings

a # of matches + ss -"1 si,sj NB. # of matches
r<+/(s bfpPsi)A.=si,s]j )
r<s bf len;si;sj;i;j;kim
A Generate all shuffles.
ieR((Ps)IP2)T12%Ps

A Mask on char distn.
j<(len=+/i)#i

k<1tPj ¢ Jj<«,j ¢ m<«(Pj)Ps
si«(k,len)Pj/m
sj<(k,(Ps)-len)P(~j)/m
r<si,sj

Figure 2: Brute force J string shuffle algorithm

see. An empty string will shuffle two empty sub-
stringssi andsj. A non-empty strings will shuffle

si andsj if its first character matches the first char-
acter ofsi and1+s shufflesivsi andsj. s will
also shufflesi ands7 if its first character matches
the first character o6 and1 +s shuffles1+sj and
Figure 1: Brute force APL string shuffle algorithmsi. Such a recursive definition is shown as APL in
Figure 5 and as J in Figure 6. Lils®F, the recursive

In computer science, simple algorithms are eithghplementation gives the number of possible shuf-
the best or the worst thing going. The brute forggg.

st_ring shuffle algorithm represents the Iatt«_ar case. ASThese recursive functions avoid creating the huge
Figure 3 shows, both the APL and J versions of thr?termediate arrays that the brute force approach

. L . [
algorithm fail with string Iength_s Iess_ than 20, bu&s?s, and thereby avoid the storage limitations that
they nonetheless consume an inordinate amountkm SBF. However, the curves in Figure 4 labeBR
computer time and storage while doing sb.It is andSR-J representing the recursive APL and J func-
c!ear that better approaches are called for, and Cns respectively, show us that the performance of
sion might be one such approach. these functions is also dismal — they are doing an
exponential amount of work, just as the brute force
algorithm does.

3 Recursion
Later on, we will see how to reduce the work-

The use of recursion seems a natural for this sort|@hd to a reasonable size. Perhaps there is a way to

application, but it must be used with care, as we shgjeak the problem into sub-problems that are more

?Itis interesting to observe that the execution times are abc%%aable in terms of required computation.  Dy-

the same for APL and J. This is in sharp contrast to what we sH&@miC_ Programming is one approach we might take
observe later. to achieve that end.
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4 Dynamic Pr '
yhamic Frogramming toy must also be optimal. This insight suggests that

Dynamic Programmings used infrequently by APL P €an be (_:onstr_ucted by_ass_embling it from sma!ler
programmers, perhaps because they are ndtigam path_s, until th_e final solutl_on is reached. Bellman in-

with it, or perhaps because explicit looping does néstigated this approach in 1957 [Bel57].

fit in with what some describe as “good APL coding A ey to understanding dynamic programming is

style.” Certainly, ifis rare that looping APL code will {0 recognize when redundant work on sub-problems
outperform straight-line code. Nonetheless, as Webeing done, and then stop doing that redundant
shall see, dynamic programming is a very effectiviork. If the same sub-problem is being solved more
tool for the programmer, with performance benefit§an once, the problem is very likely a good candi-

which are difficult or impossible to achieve in nondate for a dynamic programming solution.

iterative forms. Good introductions to dynamic programming

Problems that are good candidates for dynan@igd other effective algorithms can be found in
programming are those that exhibjitimal substruc- Baase [Baa88] and Cormen, Leiserson, and Rivest
ture. Optimal structure means that an optimal sol{lCLR90]. Some articles published in recent APL
tion to the problem contains sub-problems whose g@&nferences discussing dynamic programming in-
lutions are also optimal. clude Lin, et al. [LB90] and Kimbrough [Kim95].

As an example, considd?, the optimal (short- In string shuffle, both the recursive and brute force
est) path through some graph, that happens to pakgrithms examine the tail end of the string repeat-
through two nodes andy. In that case, the pathedly. A dynamic programming algorithm avoids this,
taken fromx to y is also optimal — if it were not opti- looking at each character a minimal number of times.
mal, thenP could be shortened by taking the ne/n example will show how it works.
shorter path fronx to y. This contradicts the as- We buildm, a Booleardynamic programming ma-
sumption of optimality ofP, hence the path from trix, of shape( (1+Psi),1+Psj). If 1=m[i;3 ],

4



r<s SR yj;si;sji;i;jsk SR=3:0

a Recursive string shuffler. : NB. x. is string to match

si«D y[0] ¢ sj<«D y[1] NB. sl;s2 substrings

>(1ZPs)PR ¢ r<+/s=si,sj ¢ -0 si= >0 {vy.
R:>(0ZPsi)PR2 ¢ 1i<0 ¢ -=R3 sj=>1 {vy.

R2: if. 1 > $x. do.
1«(s[0]1=sil[0]1)x(1+s)SR (1+si)C sj X. = Si,§]
R3:>(0Z£Psj)PRY ¢ j<«0 ¢ -R5 else. NB. Recurse on si
Ry : i= 0
j«(s[0]=sj[0])x(1¥s)SR si C 1¥sj if. 0 ~: $si do.
R5:r<i+j i= ( }. x) SR ( }si)s]

_ _ _ _ i=i*x =% { s
Figure 5: Recursive APL string shuffle algorithm end.

j=. 0 NB. Recurse on sj
then (i+5)+s shufflesitsi andj+sj. The first if. 0~ $sj do.
row and column, which correspond to taking zefo = ( }. x) SR si; }.j
characters from one of the substrings, are initialized 1= | * x. =& {. sj
by comparison against the other substring. This gan end.
be performed in APL as follows: i
end

ml;0]«1,A\si=(Psi)ts )
ml0;]1«1,A\sj=(Psj)ts
The definition ofm[i;51 given in the previous Figure 6: Recursive J string shuffle algorithm
paragraph is implemented by noting that a shuffle
will exist if either of the following conditions exist: exnausted. Thus, the complete computation requires

(Psi)xpPsj iterations. When both loops have been

* cc, the current character @.fmatcheSSi L1~ exhausted, at least one shuffle existsif 1 ~1 tm.
11, the current character efi and a shuffle ex- 5, the twornuTS 1 " examples given earlier, the

ists for the previous prefix afi and the current final dynamic programming matrices look like this,

prefix of s3: when annotated with their respective arguments:
ti<«mli-1;j]Acc=sili-1] "y S !
"1 000
e Or, cc, the current character of matches N 110 0
sj[j- 11, the current character &fj and a T o 111

shuffle exists for the previous prefix efj and

the current prefix oki: "YUl g
tj«mli;j—-1]Acc=sjl[j-1] "1 000
N1100
Two loops take us across both substrings, enter- T 0 14 0 0

ing elements ofn, until both substrings have been Althoughsbyn, shown as APL in Figure 7, does
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not directly provide the number of possible shuffles, Performance and Execution Over-
the dynamic programming matrix permits back- head
tracking to determine that information.

The performance ofDyn on the string shuffle Performance of the various string shuffle algorithms
problem is shown as the curve labe®DBynin Fig- is strongly algorithm- and data-sensitive, as can be
ure 12. Ignoring the other curves on the graph feeen from Figure 8, which shows string shuffle times
the moment, note that execution time remains under all algorithms on strings of varying lengths.
one second for a string length of 24, long after ti&ince the y-axis of the plotis a log scale, the increase
competition (brute force and simple recursion) have execution time required is much greater than the
failed. curve suggests. Since these differences are so dra-

It is important to understand some of the fadnatic, it may be instructive to take a brief look at the
tors contributing to these times before seeking oth@iigins of APL interpreter execution overheads.
methods qf performa_nce improvement. We shall djs- String Shuffle Performance
cuss the impact of interpreter overhead briefly |n best of breed
the following section before resuming our effortsto 19
improve the performance of the string shuffle algo-
rithms.

[EnY
o

r<s SDyn y;m;ij;jj;si;sjstistj;cc

CPU time (sec)
[2=Y

a Dynamic Prog. string shuffle 0.1
si<D y[0] ¢ sj<«D yl1]

: : . 0.01
me(1+(Psi),PsjIPO o DP matrix. 2 6 10 14 18 22 26 30 34 38 42 46 50
m[;0]«1,A\s1i=(Psi)*s e Prime string length
m[O;]*i,A\Sj:(ij)¢s A pump v SBF -~ SR = SR2 -© SDyn3
j<1 +SBF-J +SR-J =SR2J -=SDyn3-J
lpj:=»(j>Psj)Plpjz m FOR loop
i<l
lpi:»(i>Psi)Plpiz a FOR loop Figure 8: Comparative performance of APL and J
cces[i+j—-1]1 a Current char in s algorithms

A Match on si, sj
ti<«mli-1;j]Acc=sili-1] ]
tj«mli;j-1]Acc=sFL-11 5.1 APL Execution Overheads

mii;jletive] All successful APL systems to date have been inter-

ieitl © ~lpi active and interpreter-based. Unlike compiled lan-
lpiz:j<j+1 ¢ -1pj
lpjz:r< 1 "1 +tm

3Timings were performed in APL*PLUS Il and ISI J Ver-
sion 2.04beta, running under Windows 3.1 on a 16 megabyte
Figure 7: Dynamic programming APL string Shufﬂ@3M-compatibl_e 486/33 PC_. The disco_ntitias in the plot are
algorithm qu to grossly inadequate timer resolution Qn.PCs. Users of pro-
filing tools should be aware that results of timing can be skewed
by coarse timing facilities.




APL Primitive Overhead
time/element

guages, the interactive nature of APL lets a user dy-
namically alter any aspect of the environment. The
type, rank, and shape of arrays can change, func- 140 =
tions can change their valence (e.g., from monadic § 120 :
to dyadic), and the syntax class of named objects (:ané 100 &

change underfoot, as when someone expunges avariy gp

able and then defines a function with the same name. 5 4, :

These factors restrict the amount of interpreter anal- 40

ysis that can usefully be done on an APL expression § 20 1

to improve its performance. In particular, such fac- & o T
tors require that the interpreter validate arguments to 1 3 5 7 9 11131517 19 212325
verbs and adverbs at each primitive execution, de- # elements in array

termine how the primitive is to be executed (e.g=
“Boolean+real” has to be done using real arith-

metic), perform conformability checks to ensure that  Figure 9: APL primitive startup overhead

arrays are of appropriate shapes, and perform storage

management operations to create results and discard . ) S
arguments. The net result is that there is substantiagf*" additional overhead in APL execution is that
overhead associated with the execution of each ABBSociated with a defined function call. This over-
primitive, independent of its element count. In conft€@d is largely imposed by APL's dynamic scoping
putations on arrays, this startup overhead is am@fl€S: As with per-primitive overhead, its impact
tized over the array elements. The overhead for s(fifh€xecution time depends heavily on the amount of

operations on arrays of a dozen elements or more fMpPutation performed within the defined function.
comes acceptably low, as shown in Figurd 9. If the amount of computation is small, then the time

The graph also shows that, unfortunately, opert(?i‘-ken by the function call dominates.

tions on scalars and arrays of a few elements can takén both cases, a compiled version should perform

25 times as long per element as operations on Ia%%nificantly better than an interpreted version. A

arrays: overhead dominates the execution time ﬁ)qmpller has the luxury of being able to spend time

scalar and small array operations. Execution profil%)éammmg the application to deduce array properties

taken at the system level confirm that this is the cag%.erg_g’] and to analyze th_e_ names used in _the com-
The execution time for such operations can theRUtation. These steps facilitate faster function calls,
fore, be estimated quite closely by counting the nu'rﬁ_moval of certain run-time COhdeI’mablll'[)I/ chzgk_s,
ber of primitives executed. The best way to imprO\Fée_tter stor_age management, and soon. in a ition,
the performance of such applications is to reduce # recursions can _be_ tur_ned Into |terat|ons_, thereby
number of primitives executed. This technique wﬂl owing further optimizations to take place #®.

be used in the next section to reduce the execution

time of the algorithms presented thus far. 5.2 The Impact of Interpreter Overhead

“This plot is taken from a mainframe APL system, as P¥ith the above knowledge of interpreter behavior in
clock resolution was inadequate to make these measuremeni®@and, a look at the string shuffle algorithms begins
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to reveal why they perform as they do. Figure 8so appeal to some basic computational complex-
shows most of the algorithms discussed in this aty arguments to decide where such efforts would be
ticle, and offers a quick way to compare their pewasted.

formance. Consider the brute forceBF) approach

first: For very small arrays, brute force beats the re- o

cursive ER) and dynamic programmingyn) ap- Optimizing SBF

proaches, because_it has the fewest primitives %{king a brief look atSBF, we note that ans-
ecuted and array sizes are small enough that p%a

primitive overhead dominates the computation on ereby placing itin the class of exponentially expen-

a:gorlthmls. Sl;np!;_recursllorsf? I'(n AT(S ari%c‘)] !s sive functions whose execution time doubles for each
always a loseriorthis prp_ em, taking 19— t'm%ﬁement added to the argument. This computational
as long as the competition on an 8-character ar

. . - %lt')'mplexity makes such functions impractical to use
ment. This is because it executes many primitives REF any but the smallest arguments

call, all operating on very small arrays. Furthermore, . . . .
. . . . AsF
linesrR2 (andRu) of SR fail to avoid the recursive . s Figure 3 shows, exponential growth in cpu time

call when the result is already known to be zero be- 2 bad sign — the execution time SBF grows

. rapidly th ny effor improve i rform-
causes[0]#si[0]. Hence,SR does an immense>_ 2P dly that any effo ts_ to improve Its perio
ance are lost when the string grows a few characters
amount of unnecessary work.

A { si h ¢ K longer. SBF’s exponential growth in space is mani-
¢ S Zr%umg; SIZ;SRQLOW’. te Tusa_(:[)rytmlllor ICijei‘re'sted by the fact that it fails with a workspace full at
ormed by SBE and Sk begin 10 take Its 1oll, and 15 - aracters in a 3.7 megabyte workspace. There-

SDtyn S??ES tokshlne. W;‘g;rgurgebntslzf il cha ore, we shall ignore the brute force technique, as it
acters, 1t Lreaxs even wi » and by 24 charace;q unacceptably expensive in practice.

ters, dynamic programming is running 7 times faster

than the brute force approach. Naive recursion looks

even worse thaisBF, taking two orders of magni-6.2 Optimizing SR

tude longer to execute. Can the performance of these

techniques be improved using knowledge of intepeveral optimizations iR are possible, but the one

preter characteristics? If so, what effect, if any, wifvith the biggest payoff is elimination of the spurious

that have on their performance? recursive calls tesR when we do not care about the
result, because we know in advance of the call that
no match can possibly exist. In line® andry of

6 Optimizing APL Applications SR in Figure 5, recursive calls are made in which the
result of the calls is multiplied by a Boolean. Rewrit-

The performance of real-life APL applications caimg the code to avoid the call when the Boolean is

usually be best improved by use of profiling toolgero, shown asr2 as APL in Figure 10 and as J in

such aglfm in SHARP APL and ISIAPL [BB93] or Figure 11, pays off handsomely. The performance of

Omf in APL*PLUS [Ber89]. However, for this sim-this better recursive solution is shown as curS&2

ple exercise, we restrict our attention to reducing ta@dSR2-Jn Figure 4.

number of calls to defined and primitive functions The J version ofSrR2 is an order of magnitude

and to reducing the amount of work they do. We wifaster than the APL version. A cursory benchmark to

Ement string generates arrays witho s elements,

8



determine if the cause was APIskadowingf local
variables at function call time was not informative.

r<str SR2 s;sij;sjji;jiszk
A Recursive string

si«D s[0] ¢ sj<«D sl1]
r<str=si,sj ¢ -(1=Pstr)PO
j«0 ¢ -»(0=Psi)Prec3
>(str[0]#Zsil0])Prec3
j<(1+str) SR(1+si) C sj
rec3:k<0 ¢ »>(0=Psj)Prech
»>(str[0]#Zsj[0])Prech
k«<(dvstr) SR si C 1tsj
rechb:r<j+k

Figure 10: Optimized APL recursive string shuffle

6.3 Optimizing SDyn

Dynamic programming solutions usually perforr

SR2 =.3:0
: NB. x. is string to match
si = >0 { y. NB. sl;s1 substring
sj=>1 {vy.
if. 1 > $x. do. X. = Si,§j
else.
i=. 0 NB. Recurse on si
if. 0 ~: $si do.
if. (0 {x) =0 {si do.
i = ( } x) SR ( }sis

end.
end.
j=. 0 NB. Recurse on sj
if. 0 ~: $sj do.

if. (0 {x) =0 {sj do.
j=( } x)SRsi; }s
end.
end.
i+]
n end.

simple computations on array elements, iterati

nY

over potentially large arrays without exploiting

APL’s array processing capabilities. Hence, dynamic Figure 11: Optimized J recursive string shuffle

programming algorithms in APL place us at the high
end of the overhead curve in Figure 9, where com-

putation time is dominated by the number of prin{lon on scalars, mastly involving the current charac-
[y in the argument string. The computation and
best method is to move computations out of loop§e Ofcc is static in the sense that it depends only

when possible, and to simplify them otherwise. \Wen the values of the string and substrings, and does
not require examining any elements of the dynamic

programming matrixn as it evolves. Thus, remov-
ing that code from the inner loop, and precomput-
ing an array corresponding to the values-af then
indexing elements from that array as execution pro-
ceeds, has the potential for replacing ten computa-
tions with one on each iteration. This precomputa-
tion technique is known to compiler writers esde
hoisting where it is used to remove loop-invariant
code from loops by moving it before the loop.

itives executed. To improve performance here, t

will perform these types of optimizations @Dbyn:

e code hoisting

e strength reduction

e common subexpression elimination (CSE)
e other improvements

6.3.1 Code Hoisting

The inner loop ofsbyn, starting at labellpi as

shown in Figure 7 contains considerable computa-With regard to performance of this optimization,

9



we recognize that the entire dynamic programmingmp1<d[i] ¢ altempi]l+bltemp1]. The
inner loop is scalar computations. Hence, we expéatter fragment runs faster because it does not have
that their removal should have a significantimpact ¢o re-evaluate the inner index expression. CSE is
loop execution time. It does, removing nearly ha#f standard feature of every compiler written today,
of the primitives in that loop. Figure 14 shows theven though it has a fairly small direct impact on
function after application of this and the two otharser-written code, écause most programmers avoid
optimizations discussed below. writing such expressions. CSE has a substantial im-
It is important to note that the precomputation gfact on compiled code performance because compil-
m is linear in the product of the sizes of the two sulers generate common subexpressions as part of an
strings, unlike the brute force method, which is exatermediate step of the compilation process, then
ponential in the size of the argument string. Thugse CSE to remove them. For example, the expres-
the time required for this precomputationis low. sionx[i1+j[i] would generate two sets of code
to turn the array index into an address offset into
the arrays in storage. CSE would then remove one of
these, producing a temporary value that would then
Strength reduction is another frequently encounterieel used to reference both arrays.
tool in the compiler writer's toolkit. Strength reduc- In sbyn2, the two references tb[i] are re-
tion traditionally replaces one operation by anothptaced by an assignment to a temporary noun
that is simpler or faster to compute. A traditionaj<b[i1], followed by two references to the tempo-
example is replacement ofx2 by x+x, although rary j. As with strength reduction, the performance
RISC technology has reduced the impact of that pamprovement gained is probably small compared to
ticular optimization. In APL, some primitives arethat of code hoisting. Without code hoisting, the im-
faster and/or simpler than others. In the exampbeovement of CSE by itself is likely to be negligible.
used here, indexing into the dynamic programmitdpwever, as more and more code is removed from
matrix @m[i;3j1) isreplaced by the less complex inthe inner loop, the observed benefit of such tech-
dexing into a vectoref[ 11). The performance im-niques increases.
provement gained by doing this particular optimiza-
tion is _probably consigle_rably less substar_ltial thz€=5r_13_4 Other Improvements
that gained by code hoisting. Nonetheless, it can pay
off when, for example, a complex indexing expregwmnother improvement arises from simple code en-
sion can be replaced by a simple Boolean compuggreering practice. The dynamic programming ma-
tion. trix m is created initially as a Boolean array. The
dynamic programming iteration through this matrix
has the sole purpose of setting more of its elements
to zero. Elements which are already zero need not
Common subexpression elimination (CSE) is a cofne examined during the iterative stage, so a reduc-
piler optimization technique that replaces two dion in work can be achieved by building a worklist
more occurrences of the same expression in a pipthe index vector of non-zero elementsinSince
gram with one. For example, the code frags will tend to be largely zero for typical data, this
mentaldlil]+bl[dli]] would be turned into improvement reduces the amount of work that has to

6.3.2 Strength Reduction

6.3.3 Common Subexpression Elimination
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be performed. Since two vendors of APL productshave recently
released support for flow control structures, it is ap-
L propriate to examine the performance and readabil-
7 Optimized Performance ity of structured APL code compared to traditional
Lo methods.
After optlmlzatlpn,the APL performanf:e of the old The function SDyn3, shown in Figure 15, is
and new recursivesR, SR2) and dynamic program-, o algorithm ofspyn?2 trivially revised to use the

ming (SDyn, Sbyn2) algorithms have improved, ¢ | “uo control structure of APL*PLUS Il The
significantly, although the relative performance Ie\(.-s

| hiv th h i Fi 12 ist of values taken on by the induction variakilés
Iiizsrr:éoug y the same, as shown in Figure ecified after the in keyword® The loop then op-

erates sequentially, withtaking on the next element
String Shuffle Performance of the list on each iteration.
dynamic programming The structured code is shorter and easier to read
than the GOTO-based code in Figure 14, potentially
improving its reliability and maintainability. It also
runs faster than its predecessor, as seen in Figure 13:
For large arguments, the structured code uses less
than 70% of the time required by GOTO-based code.
This performance improvement arises from the re-
O JHT o b moval of the mo!uc_t!on variable update code. In
string length SDyn2, seven primitives are executed to handle the
increment and testing df and loop closure. Most of
the processing time associated with this maintenance
is overhead removed by use of théor loop.

It is also interesting to observe that the perform-
Figure 12: Performance of dynamic programminghce of APL*PLUS Il onSbyn2 and SDyn3 is
algorithms nearly an order of magnitude faster than that of
SDyn3-Jon ISI J Release 2.04. This is exactly the
opposite result from that observed with the recur-
sive functions, where J was substantially faster than
8 Control Structures APL*PLUS IlI. Itis this sort of disparity in perform-

. . . ance ratios that makes one eschew benchmarking as
We now have a fairly well optimized version of a

q ) camming alaorithm for the strin shufa black art. It also lets marketeers on all sides claim,
ﬂynamtl)cl progfh_ Ig a_t%o : h'ohl " t'g with as much honesty as they can muster, that
i problem. 'S algorithm 1S highly Terative, S‘Oproduct is an order of magnitude faster than theirs!
it is time to turn to the introduction of flow con-
trol structures. Flow control structures are populat n
in most compiled languages because they make codg 'SCn Software Inc. and Manugistics, Inc.

P guag . y ’An induction variablds one whose value in a loop changes
more readable than GOTO-ridden code and becaysgell-defined and predictable manner. In Figure 4s an
they allow compilers to produce more efficient cod@duction variable.

o
N
ol

CPU time (sec)
o
N o
(6)] al

|~-SDyn -=SDyn2 —~SDyn3 -~ SDyn3-J|
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Performance of Flow Control Structures ; litiaa i
APL'PLUS Il dynamic programming ° Structure_d.programmmg facn-ltles_l_mprove pro-
5 gram efficiency and maintainability in APL,
just as they do in other languages.
N
[S]
fmjs e APL is faster than J.
=3
5 ol e Jis faster than APL.
Y
O g fomirne e Jand APL run at the same speed.
0575 _ Additional material about dynamic programming
string length is available [SF92, AHU74, HS78]. A good prag-
\+Go TO loop (SDyn2) = :FOR loop (SDyn3) | matic introduction to dynamic programming appears

in Baase [Baa88].

Figure 13: Performance of APL control structures vs
GOTO 10 Acknowledgments

| am grateful to Diane Whitehouse and Marc Grif-
9 Summary fiths for their thoughtful and meticulous review and

Thi has tak ol | q _edéiting of this article. The presentation of material
'S paper has taken a simple puzzie and examingls ¢, improved substantially as a result of sug-

it from several algorithmic viewpoints. The Iesson&estions received from the APL95 referees
we may learn from this analysis are: '

e Recursion usually does not pay off if the
amount of computation performed at each level
is small. Naive recursion is worse than brute
force, in most cases.

¢ Brute force algorithms are often attractive for
very small arguments, but their computational
complexity often makes them impractical as ar-
gument sizes increase.

e Iteration in APL is not necessarily An Evil
Thing To Do.

e Dynamic programming can win big over other
approaches. It has wide application in areas
such as computations on graphs, approximate
string matching, binary search trees, text for-
matting, etc.
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r<s SDyn2 y;i;m;ij;sij;sj;b;d;j

a DP string shuffler (opt)

si«D y[0] ¢ sj<«D y[1]

me(' ',s)[(114+Psi)o.+114+Ps]]
b<m<(m=(Pm)P' ',sj)vm=R(dPm)P' ',si
bl[0;1<«bl[;0]1«0 ¢ b<,b ¢ b<b/1Pb
mL;0]«A\m[;0] ¢ m[O;]«A\m[O0;]
m<,m

i<0

d«1+0,Psj a Dist to next row, col
lp:»(i=Pb)Plpz a FOR loop

j<bli]

ml{jl<v/m[j-d]

i«i+1 ¢ -lp

lpz:r< 1tm

Figure 14: Optimized APL dynamic programming string shuffle

r<s SDyn3 yi;ijm;si;sj;b;d;]
a DP string shuffler (opt)
si«D y[0] ¢ s3j<«D yl[1]

m<(' ',s)[(11+Psi)o.+114+PsT]
me(m=(Pm)P' ',s3)vm=R(PPm)P"' ',si
b<m

bl0;1«bl[;0]1«0 ¢ b<«,b ¢ b<b/1Pb
mL;0]«A\m[;0] ¢ m[O;]«A\m[O0;]
m<,m
d«1+0,Psj a Dist to next row, col
:for i :in 1Pb A FOR loop

j<bli]

m[jl<«v/m[j—-d]

rendfor
r< 1tm

Figure 15: DP APL string shuffle with control structures
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SDyn3 =. 3: 0

: NB. x. is string to match

si =. >0 { y. NB. y. is substrings
si=>1 {y.

NB. Build DP matrix

m=si+ & (. &# g
m=m1} x

b = sj="1 m NB. Build worklist
b= m=Db+] si="l || m
b= ,0"1b

b = b#i#b

NB. Set edge of DP matrix

m = (*/ \sj=(#s))$x.),m
m = . * \lsi=(#si)$x.),"l m
NB. Distance to next row, column
d = 1+0#sj
i =. 0 NB. DP loop
while. i <#b do.
=i {b
m = (+/(-d)  {m)j}m
i= >
end.

{im

)

Figure 16: DP J string shuffle with control structures
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