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Abstract

Dynamic programming is used infrequently by APL
programmers, in spite of its ability to reduce the
computational effort required to solve many prob-
lems. This paper uses theString Shuffleproblem as
the basis for a comparison of brute force, recursive,
and dynamic programming algorithms. Simple al-
gorithms for each of these approaches are designed
and evaluated, then individually optimized and re-
evaluated, to show the benefits of dynamic program-
ming.

The dynamic programming algorithm is then re-
cast to use flow control structures recently intro-
duced into ISI J and APL*PLUS III. Use of con-
trol structures in conjunction with dynamic program-
ming results in orders of magnitude performance im-
provement over brute force and naive recursive algo-
rithms. APL*PLUS III control structures are shown
to provide a performance improvement of up to 30%
over GOTO-based loops.

�This paper originally appeared in the ACM SIGAPL APL95
Conference Proceedings. [Ber95]

Keywords

dynamic programming, flow control structures, con-
trol structures, performance, optimization, APL, J,
puzzles, interpreter overhead.

1 Introduction

The String Shuffleproblem is a simple puzzle that
will serve to demonstrate why brute force solutions,
although often elegant and simple to express in APL,
may be impractical for solving many problems be-
cause of the large computational resources they re-
quire. The use of recursion, dynamic programming,
and flow control structures permits solutions to the
same problems in far shorter times.

The string shuffle problem may be stated as:
Given a strings and two substringssi andsj, such
that(Òs)=Òsi,sj, cans be constructed by alter-
nately picking zero or more leading characters from
the remaining parts ofsi andsj? If so, thens is
said toshufflethe substrings.

For example, the string'NUTS!' shuffles sub-
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strings 'NT' and 'US!', but not 'NT' and
'U!S', because of the restriction on picking char-
acters from the front of each substring. A variant on
the problem asksIn how many ways can the string be
constructed?, but we shall concentrate on the simpler
decision problem.

We will first consider three basic APL algorithms
for solving the string shuffle problem. The al-
gorithms will then be tuned to improve their per-
formance. Finally, the dynamic programming algo-
rithm, recast to use the flow control structures re-
cently made available in Iverson Software’s ISI J and
Manugistics’ APL*PLUS III, will be compared to
the GOTO-based algorithm. The approaches to be
examined are:

� Brute force

� Naive and intelligent recursion

� Dynamic programming

2 The Brute Force Solution

One brute force solution is to interleave the sub-
strings in all possible ways, then determine if any
of them match the string. The hard part is to figure
out how to generate all the possible combinations of
the substrings.

We gain insight into the problem by viewing it
backwards: How can the string be broken up into
two substrings of the proper length, while preserv-
ing the required character ordering? Compression,
of course! A suitable compression vector,cv, with
as many 1s in it as there are elements insi, can be
used to extract a substring froms of the same length
assi. Similarly, the logical negation ofcv can be
used to extract a substring of the same length assj.
If any pairs of these extracted substrings matchsi
andsj, then we have found a solution to the string
shuffle problem. For example:

1 0 1 0 0/'Nuts!' ã Generate si
Nt
0 1 0 1 1/'Nuts!' ã Generate sj

us!

The compression technique reduces the string
shuffle problem to that of generating the complete
set of possible compression vectors. Since we know
the compression vector must haveÒsi 1s in it, the
problem is easy. First, generate all possible compres-
sion vectors fors. This can be done in APL and J as
follows: 1

APL: iûô((Òs)Ò2)ÎÉ2*Òs
J: i=.#: i. 2 ^#x.

Then discard those that do not haveÒsi 1s in
them:

APL: jû((Òsi)=+/i)¯i
J: j=.((#si)=+/"1 i)#i

From here on, things get easy: Usej to gener-
ate all potentialsi lists froms, use~j to generate
all potentialsj lists, then match each pair of those
againstsi,sj. In the defined verb presented as
APL in Figure 1 and as J in Figure 2, this is done
by turning the two generated sets of lists into tables,
then catenating the two tables. An alternative ap-
proach would be to use indexing to generate potential
s lists, then match them againsts. This approach is
slower and more space-hungry, as it requires genera-
tion and use of integer index sets instead of Boolean
compression vectors.

We define two utility functions to simplify read-
ability and porting across APL systems:D is disclose
or open;C is catenate with enclose, which encloses
or boxes each of its arguments, then catenates those
results to form a two-element list:

1All code in this paper uses index origin zero. The J code
contains extra white space to make reading easier for those who
are not familiar with J.

2



ISIAPL APL*PLUS III J
D:>y D:Øy D =.>
C:x,ê<y C:(Úx),Úy C =.,&<

rûs SBF y;si;sj;i
ã Brute force string shuffle
ã s is string to generate
ã Substrings
siûD y[0] þ sjûD y[1]
ã # of matches
rû+/(s bfÒsi)^.=si,sj
rûs bf len;si;sj;i;j;k;m
ã Generate all shuffles.
iûô((Òs)Ò2)ÎÉ2*Òs
ã Mask on char distn.
jû(len=+/i)¯i
kû1ÙÒj þ jû,j þ mû(Òj)Òs
siû(k,len)Òj/m
sjû(k,(Òs)-len)Ò(~j)/m
rûsi,sj

Figure 1: Brute force APL string shuffle algorithm

In computer science, simple algorithms are either
the best or the worst thing going. The brute force
string shuffle algorithm represents the latter case. As
Figure 3 shows, both the APL and J versions of the
algorithm fail with string lengths less than 20, but
they nonetheless consume an inordinate amount of
computer time and storage while doing so.2 It is
clear that better approaches are called for, and recur-
sion might be one such approach.

3 Recursion

The use of recursion seems a natural for this sort of
application, but it must be used with care, as we shall

2It is interesting to observe that the execution times are about
the same for APL and J. This is in sharp contrast to what we shall
observe later.

SBF =. 3 : 0
: NB. x. is string to match

si =. >0 f y. NB. Substrings
sj =. >1 f y.
NB. All subsets
i =. #: i. 2 ^ # x.
j =. ((#si)=+/"1 i)#i NB. mask
ss =. (j# x.),"1 (-.j)#x.
NB. Build & catenate substrings

+/ ss -:"1 si,sj NB. # of matches
)

Figure 2: Brute force J string shuffle algorithm

see. An empty strings will shuffle two empty sub-
stringssi andsj. A non-empty stringswill shuffle
si andsj if its first character matches the first char-
acter ofsi and1Õs shuffles1Õsi andsj. s will
also shufflesi andsj if its first character matches
the first character ofsj and1Õs shuffles1Õsj and
si. Such a recursive definition is shown as APL in
Figure 5 and as J in Figure 6. LikeSBF, the recursive
implementation gives the number of possible shuf-
fles.

These recursive functions avoid creating the huge
intermediate arrays that the brute force approach
uses, and thereby avoid the storage limitations that
kill SBF. However, the curves in Figure 4 labeledSR
andSR-J, representing the recursive APL and J func-
tions, respectively, show us that the performance of
these functions is also dismal – they are doing an
exponential amount of work, just as the brute force
algorithm does.

Later on, we will see how to reduce the work-
load to a reasonable size. Perhaps there is a way to
break the problem into sub-problems that are more
tractable in terms of required computation. Dy-
namic Programming is one approach we might take
to achieve that end.
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Figure 3: Performance of brute force algorithms

4 Dynamic Programming

Dynamic Programmingis used infrequently by APL
programmers, perhaps because they are not familiar
with it, or perhaps because explicit looping does not
fit in with what some describe as “good APL coding
style.” Certainly, itis rare that looping APL code will
outperform straight-line code. Nonetheless, as we
shall see, dynamic programming is a very effective
tool for the programmer, with performance benefits
which are difficult or impossible to achieve in non-
iterative forms.

Problems that are good candidates for dynamic
programming are those that exhibitoptimal substruc-
ture. Optimal structure means that an optimal solu-
tion to the problem contains sub-problems whose so-
lutions are also optimal.

As an example, considerP, the optimal (short-
est) path through some graph, that happens to pass
through two nodesx and y. In that case, the path
taken fromx to y is also optimal – if it were not opti-
mal, thenP could be shortened by taking the new
shorter path fromx to y. This contradicts the as-
sumption of optimality ofP, hence the path fromx
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Figure 4: Performance of recursive algorithms

to y must also be optimal. This insight suggests that
P can be constructed by assembling it from smaller
paths, until the final solution is reached. Bellman in-
vestigated this approach in 1957 [Bel57].

A key to understanding dynamic programming is
to recognize when redundant work on sub-problems
is being done, and then stop doing that redundant
work. If the same sub-problem is being solved more
than once, the problem is very likely a good candi-
date for a dynamic programming solution.

Good introductions to dynamic programming
and other effective algorithms can be found in
Baase [Baa88] and Cormen, Leiserson, and Rivest
[CLR90]. Some articles published in recent APL
conferences discussing dynamic programming in-
clude Lin, et al. [LB90] and Kimbrough [Kim95].

In string shuffle, both the recursive and brute force
algorithms examine the tail end of the string repeat-
edly. A dynamic programming algorithm avoids this,
looking at each character a minimal number of times.
An example will show how it works.

We buildm, a Booleandynamic programming ma-
trix, of shape((1+Òsi),1+Òsj). If 1=m[i;j],
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rûs SR y;si;sj;i;j;k
ã Recursive string shuffler.
siûD y[0] þ sjûD y[1]
ý(1¨Òs)ÒR þ rû+/s=si,sj þ ý0
R:ý(0¨Òsi)ÒR2 þ iû0 þ ýR3
R2:
iû(s[0]=si[0])«(1Õs)SR (1Õsi)C sj
R3:ý(0¨Òsj)ÒR4 þ jû0 þ ýR5
R4:
jû(s[0]=sj[0])«(1Õs)SR si C 1Õsj
R5:rûi+j

Figure 5: Recursive APL string shuffle algorithm

then(i+j)Ùs shufflesiÙsi andjÙsj. The first
row and column, which correspond to taking zero
characters from one of the substrings, are initialized
by comparison against the other substring. This can
be performed in APL as follows:

m[;0]û1,^\si=(Òsi)Ùs
m[0;]û1,^\sj=(Òsj)Ùs

The definition ofm[i;j] given in the previous
paragraph is implemented by noting that a shuffle
will exist if either of the following conditions exist:

� cc, the current character ofs matchessi[i-
1], the current character ofsi and a shuffle ex-
ists for the previous prefix ofsi and the current
prefix ofsj:

tiûm[i-1;j]^cc=si[i-1]

� Or, cc, the current character ofs matches
sj[j- 1], the current character ofsj and a
shuffle exists for the previous prefix ofsj and
the current prefix ofsi:

tjûm[i;j-1]^cc=sj[j-1]

Two loops take us across both substrings, enter-
ing elements ofm, until both substrings have been

SR =. 3 : 0
: NB. x. is string to match

NB. s1;s2 substrings
si =. >0 f y.
sj =. >1 f y.
if. 1 >: $x. do.

x. = si,sj
else. NB. Recurse on si

i=. 0
if. 0 ~: $si do.

i =. ( g. x.) SR ( g.si);sj
i =. i * x. =& f. si

end.
j=. 0 NB. Recurse on sj
if. 0 ~: $sj do.

j =. ( g. x.) SR si; g.sj
j =. j * x. =& f. sj

end.
i+j

end.
)

Figure 6: Recursive J string shuffle algorithm

exhausted. Thus, the complete computation requires
(Òsi)«Òsj iterations. When both loops have been
exhausted, at least one shuffle exists if1=¢1 ¢1Ùm.
For the two"NUTS!" examples given earlier, the
final dynamic programming matrices look like this,
when annotated with their respective arguments:

" U S !
" 1 0 0 0
N 1 1 0 0
T 0 1 1 1

" U ! S
" 1 0 0 0
N 1 1 0 0
T 0 1 0 0

AlthoughSDyn, shown as APL in Figure 7, does
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not directly provide the number of possible shuffles,
the dynamic programming matrixm permits back-
tracking to determine that information.

The performance ofSDyn on the string shuffle
problem is shown as the curve labeledSDynin Fig-
ure 12. Ignoring the other curves on the graph for
the moment, note that execution time remains under
one second for a string length of 24, long after the
competition (brute force and simple recursion) have
failed.

It is important to understand some of the fac-
tors contributing to these times before seeking other
methods of performance improvement. We shall dis-
cuss the impact of interpreter overhead briefly in
the following section before resuming our efforts to
improve the performance of the string shuffle algo-
rithms.

rûs SDyn y;m;i;j;si;sj;ti;tj;cc
ã Dynamic Prog. string shuffle
siûD y[0] þ sjûD y[1]
mû(1+(Òsi),Òsj)Ò0 ã DP matrix.
m[;0]û1,^\si=(Òsi)Ùs ã Prime
m[0;]û1,^\sj=(Òsj)Ùs ã pump
jû1
lpj:ý(j>Òsj)Òlpjz ã FOR loop
iû1
lpi:ý(i>Òsi)Òlpiz ã FOR loop
ccûs[i+j-1] ã Current char in s
ã Match on si, sj
tiûm[i-1;j]^cc=si[i-1]
tjûm[i;j-1]^cc=sj[j-1]
m[i;j]ûti©tj
iûi+1 þ ýlpi
lpiz:jûj+1 þ ýlpj
lpjz:rû ¢1 ¢1 Ùm

Figure 7: Dynamic programming APL string shuffle
algorithm

5 Performance and Execution Over-
head

Performance of the various string shuffle algorithms
is strongly algorithm- and data-sensitive, as can be
seen from Figure 8, which shows string shuffle times
for all algorithms on strings of varying lengths.3

Since the y-axis of the plot is a log scale, the increase
in execution time required is much greater than the
curve suggests. Since these differences are so dra-
matic, it may be instructive to take a brief look at the
origins of APL interpreter execution overheads.
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Figure 8: Comparative performance of APL and J
algorithms

5.1 APL Execution Overheads

All successful APL systems to date have been inter-
active and interpreter-based. Unlike compiled lan-

3Timings were performed in APL*PLUS III and ISI J Ver-
sion 2.04beta, running under Windows 3.1 on a 16 megabyte
IBM-compatible 486/33 PC. The discontinuities in the plot are
due to grossly inadequate timer resolution on PCs. Users of pro-
filing tools should be aware that results of timing can be skewed
by coarse timing facilities.
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guages, the interactive nature of APL lets a user dy-
namically alter any aspect of the environment. The
type, rank, and shape of arrays can change, func-
tions can change their valence (e.g., from monadic
to dyadic), and the syntax class of named objects can
change underfoot, as when someone expunges a vari-
able and then defines a function with the same name.
These factors restrict the amount of interpreter anal-
ysis that can usefully be done on an APL expression
to improve its performance. In particular, such fac-
tors require that the interpreter validate arguments to
verbs and adverbs at each primitive execution, de-
termine how the primitive is to be executed (e.g.,
“Boolean+real” has to be done using real arith-
metic), perform conformability checks to ensure that
arrays are of appropriate shapes, and perform storage
management operations to create results and discard
arguments. The net result is that there is substantial
overhead associated with the execution of each APL
primitive, independent of its element count. In com-
putations on arrays, this startup overhead is amor-
tized over the array elements. The overhead for such
operations on arrays of a dozen elements or more be-
comes acceptably low, as shown in Figure 9.4

The graph also shows that, unfortunately, opera-
tions on scalars and arrays of a few elements can take
25 times as long per element as operations on large
arrays: overhead dominates the execution time for
scalar and small array operations. Execution profiles
taken at the system level confirm that this is the case.
The execution time for such operations can, there-
fore, be estimated quite closely by counting the num-
ber of primitives executed. The best way to improve
the performance of such applications is to reduce the
number of primitives executed. This technique will
be used in the next section to reduce the execution
time of the algorithms presented thus far.

4This plot is taken from a mainframe APL system, as PC
clock resolution was inadequate to make these measurements.
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Figure 9: APL primitive startup overhead

An additional overhead in APL execution is that
associated with a defined function call. This over-
head is largely imposed by APL’s dynamic scoping
rules. As with per-primitive overhead, its impact
on execution time depends heavily on the amount of
computation performed within the defined function.
If the amount of computation is small, then the time
taken by the function call dominates.

In both cases, a compiled version should perform
significantly better than an interpreted version. A
compiler has the luxury of being able to spend time
examining the application to deduce array properties
[Ber93] and to analyze the names used in the com-
putation. These steps facilitate faster function calls,
removal of certain run-time conformability checks,
better storage management, and so on. In addition,
tail recursions can be turned into iterations, thereby
allowing further optimizations to take place inSR.

5.2 The Impact of Interpreter Overhead

With the above knowledge of interpreter behavior in
hand, a look at the string shuffle algorithms begins
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to reveal why they perform as they do. Figure 8
shows most of the algorithms discussed in this ar-
ticle, and offers a quick way to compare their per-
formance. Consider the brute force (SBF) approach
first: For very small arrays, brute force beats the re-
cursive (SR) and dynamic programming (SDyn) ap-
proaches, because it has the fewest primitives ex-
ecuted and array sizes are small enough that per-
primitive overhead dominates the computation on all
algorithms. Simple recursion (SR) in APL and J is
always a loser for this problem, taking 10 – 100 times
as long as the competition on an 8-character argu-
ment. This is because it executes many primitives per
call, all operating on very small arrays. Furthermore,
linesR2 (andR4) of SR fail to avoid the recursive
call when the result is already known to be zero be-
causes[0]¨si[0]. Hence,SR does an immense
amount of unnecessary work.

As argument sizes grow, the nugatory work per-
formed bySBF andSR begin to take its toll, and
SDyn starts to shine. With arguments of 11 char-
acters, it breaks even withSBF, and by 14 charac-
ters, dynamic programming is running 7 times faster
than the brute force approach. Naive recursion looks
even worse thanSBF, taking two orders of magni-
tude longer to execute. Can the performance of these
techniques be improved using knowledge of inter-
preter characteristics? If so, what effect, if any, will
that have on their performance?

6 Optimizing APL Applications

The performance of real-life APL applications can
usually be best improved by use of profiling tools
such asÌfm in SHARP APL and ISIAPL [BB93] or
Ìmf in APL*PLUS [Ber89]. However, for this sim-
ple exercise, we restrict our attention to reducing the
number of calls to defined and primitive functions
and to reducing the amount of work they do. We will

also appeal to some basic computational complex-
ity arguments to decide where such efforts would be
wasted.

6.1 Optimizing SBF

Taking a brief look atSBF, we note that ans-
element string generates arrays with2*Òs elements,
thereby placing it in the class of exponentially expen-
sive functions whose execution time doubles for each
element added to the argument. This computational
complexity makes such functions impractical to use
for any but the smallest arguments.

As Figure 3 shows, exponential growth in cpu time
is a bad sign – the execution time ofSBF grows
so rapidly that any efforts to improve its perform-
ance are lost when the string grows a few characters
longer.SBF’s exponential growth in space is mani-
fested by the fact that it fails with a workspace full at
15 characters in a 3.7 megabyte workspace. There-
fore, we shall ignore the brute force technique, as it
is unacceptably expensive in practice.

6.2 Optimizing SR

Several optimizations ofSR are possible, but the one
with the biggest payoff is elimination of the spurious
recursive calls toSR when we do not care about the
result, because we know in advance of the call that
no match can possibly exist. In linesR2 andR4 of
SR in Figure 5, recursive calls are made in which the
result of the calls is multiplied by a Boolean. Rewrit-
ing the code to avoid the call when the Boolean is
zero, shown asSR2 as APL in Figure 10 and as J in
Figure 11, pays off handsomely. The performance of
this better recursive solution is shown as curvesSR2
andSR2-Jin Figure 4.

The J version ofSR2 is an order of magnitude
faster than the APL version. A cursory benchmark to
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determine if the cause was APL’sshadowingof local
variables at function call time was not informative.

rûstr SR2 s;si;sj;i;j;k
ã Recursive string
siûD s[0] þ sjûD s[1]
rûstr½si,sj þ ý(1=Òstr)Ò0
jû0 þ ý(0=Òsi)Òrec3
ý(str[0]¨si[0])Òrec3
jû(1Õstr) SR(1Õsi) C sj
rec3:kû0 þ ý(0=Òsj)Òrec5
ý(str[0]¨sj[0])Òrec5
kû(1Õstr) SR si C 1Õsj
rec5:rûj+k

Figure 10: Optimized APL recursive string shuffle

6.3 Optimizing SDyn

Dynamic programming solutions usually perform
simple computations on array elements, iterating
over potentially large arrays without exploiting
APL’s array processing capabilities. Hence, dynamic
programming algorithms in APL place us at the high
end of the overhead curve in Figure 9, where com-
putation time is dominated by the number of prim-
itives executed. To improve performance here, the
best method is to move computations out of loops
when possible, and to simplify them otherwise. We
will perform these types of optimizations onSDyn:

� code hoisting

� strength reduction

� common subexpression elimination (CSE)

� other improvements

6.3.1 Code Hoisting

The inner loop ofSDyn, starting at labellpi as
shown in Figure 7 contains considerable computa-

SR2 =. 3 : 0
: NB. x. is string to match

si =. >0 f y. NB. s1;s1 substring
sj =. >1 f y.
if. 1 >: $x. do. x. = si,sj

else.
i=. 0 NB. Recurse on si
if. 0 ~: $si do.

if. (0 fx.) = 0 fsi do.
i =. ( g. x.) SR ( g.si);sj

end.
end.
j=. 0 NB. Recurse on sj
if. 0 ~: $sj do.

if. (0 fx.) = 0 fsj do.
j =. ( g. x.) SR si; g.sj

end.
end.

i+j
end.

)

Figure 11: Optimized J recursive string shuffle

tion on scalars, mostly involving the current charac-
ter in the argument strings. The computation and
use ofcc is static in the sense that it depends only
on the values of the string and substrings, and does
not require examining any elements of the dynamic
programming matrixm as it evolves. Thus, remov-
ing that code from the inner loop, and precomput-
ing an array corresponding to the values ofcc, then
indexing elements from that array as execution pro-
ceeds, has the potential for replacing ten computa-
tions with one on each iteration. This precomputa-
tion technique is known to compiler writers ascode
hoisting, where it is used to remove loop-invariant
code from loops by moving it before the loop.

With regard to performance of this optimization,

9



we recognize that the entire dynamic programming
inner loop is scalar computations. Hence, we expect
that their removal should have a significant impact on
loop execution time. It does, removing nearly half
of the primitives in that loop. Figure 14 shows the
function after application of this and the two other
optimizations discussed below.

It is important to note that the precomputation of
m is linear in the product of the sizes of the two sub-
strings, unlike the brute force method, which is ex-
ponential in the size of the argument string. Thus,
the time required for this precomputation is low.

6.3.2 Strength Reduction

Strength reduction is another frequently encountered
tool in the compiler writer’s toolkit. Strength reduc-
tion traditionally replaces one operation by another
that is simpler or faster to compute. A traditional
example is replacement ofx«2 by x+x, although
RISC technology has reduced the impact of that par-
ticular optimization. In APL, some primitives are
faster and/or simpler than others. In the example
used here, indexing into the dynamic programming
matrix (m[i;j]) is replaced by the less complex in-
dexing into a vector (m[i]). The performance im-
provement gained by doing this particular optimiza-
tion is probably considerably less substantial than
that gained by code hoisting. Nonetheless, it can pay
off when, for example, a complex indexing expres-
sion can be replaced by a simple Boolean computa-
tion.

6.3.3 Common Subexpression Elimination

Common subexpression elimination (CSE) is a com-
piler optimization technique that replaces two or
more occurrences of the same expression in a pro-
gram with one. For example, the code frag-
ment a[d[i]]+b[d[i]] would be turned into

temp1ûd[i] þ a[temp1]+b[temp1]. The
latter fragment runs faster because it does not have
to re-evaluate the inner index expression. CSE is
a standard feature of every compiler written today,
even though it has a fairly small direct impact on
user-written code, because most programmers avoid
writing such expressions. CSE has a substantial im-
pact on compiled code performance because compil-
ers generate common subexpressions as part of an
intermediate step of the compilation process, then
use CSE to remove them. For example, the expres-
sionx[i]+j[i] would generate two sets of code
to turn the array indexi into an address offset into
the arrays in storage. CSE would then remove one of
these, producing a temporary value that would then
be used to reference both arrays.

In SDyn2, the two references tob[i] are re-
placed by an assignment to a temporary noun
jûb[i], followed by two references to the tempo-
raryj. As with strength reduction, the performance
improvement gained is probably small compared to
that of code hoisting. Without code hoisting, the im-
provement of CSE by itself is likely to be negligible.
However, as more and more code is removed from
the inner loop, the observed benefit of such tech-
niques increases.

6.3.4 Other Improvements

Another improvement arises from simple code en-
gineering practice. The dynamic programming ma-
trix m is created initially as a Boolean array. The
dynamic programming iteration through this matrix
has the sole purpose of setting more of its elements
to zero. Elements which are already zero need not
be examined during the iterative stage, so a reduc-
tion in work can be achieved by building a worklist
b, the index vector of non-zero elements inm. Since
m will tend to be largely zero for typical data, this
improvement reduces the amount of work that has to

10



be performed.

7 Optimized Performance

After optimization, the APL performance of the old
and new recursive (SR, SR2) and dynamic program-
ming (SDyn, SDyn2) algorithms have improved
significantly, although the relative performance lev-
els are roughly the same, as shown in Figure 12 and
Figure 8.
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Figure 12: Performance of dynamic programming
algorithms

8 Control Structures

We now have a fairly well optimized version of a
dynamic programming algorithm for the string shuf-
fle problem. This algorithm is highly iterative, so
it is time to turn to the introduction of flow con-
trol structures. Flow control structures are popular
in most compiled languages because they make code
more readable than GOTO-ridden code and because
they allow compilers to produce more efficient code.

Since two vendors of APL products5 have recently
released support for flow control structures, it is ap-
propriate to examine the performance and readabil-
ity of structured APL code compared to traditional
methods.

The functionSDyn3, shown in Figure 15, is
the algorithm ofSDyn2 trivially revised to use the
:for flow control structure of APL*PLUS III. The
list of values taken on by the induction variablei is
specified after the:in keyword.6 The loop then op-
erates sequentially, withi taking on the next element
of the list on each iteration.

The structured code is shorter and easier to read
than the GOTO-based code in Figure 14, potentially
improving its reliability and maintainability. It also
runs faster than its predecessor, as seen in Figure 13:
For large arguments, the structured code uses less
than 70% of the time required by GOTO-based code.
This performance improvement arises from the re-
moval of the induction variable update code. In
SDyn2, seven primitives are executed to handle the
increment and testing ofi and loop closure. Most of
the processing time associated with this maintenance
is overhead removed by use of the:for loop.

It is also interesting to observe that the perform-
ance of APL*PLUS III onSDyn2 and SDyn3 is
nearly an order of magnitude faster than that of
SDyn3-Jon ISI J Release 2.04. This is exactly the
opposite result from that observed with the recur-
sive functions, where J was substantially faster than
APL*PLUS III. It is this sort of disparity in perform-
ance ratios that makes one eschew benchmarking as
a black art. It also lets marketeers on all sides claim,
with as much honesty as they can muster, thatOur
product is an order of magnitude faster than theirs!

5Iverson Software Inc. and Manugistics, Inc.
6An induction variableis one whose value in a loop changes

in a well-defined and predictable manner. In Figure 14,i is an
induction variable.
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9 Summary

This paper has taken a simple puzzle and examined
it from several algorithmic viewpoints. The lessons
we may learn from this analysis are:

� Recursion usually does not pay off if the
amount of computation performed at each level
is small. Naive recursion is worse than brute
force, in most cases.

� Brute force algorithms are often attractive for
very small arguments, but their computational
complexity often makes them impractical as ar-
gument sizes increase.

� Iteration in APL is not necessarily An Evil
Thing To Do.

� Dynamic programming can win big over other
approaches. It has wide application in areas
such as computations on graphs, approximate
string matching, binary search trees, text for-
matting, etc.

� Structured programming facilities improve pro-
gram efficiency and maintainability in APL,
just as they do in other languages.

� APL is faster than J.

� J is faster than APL.

� J and APL run at the same speed.

Additional material about dynamic programming
is available [SF92, AHU74, HS78]. A good prag-
matic introduction to dynamic programming appears
in Baase [Baa88].
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rûs SDyn2 y;m;i;si;sj;b;d;j
ã DP string shuffler (opt)
siûD y[0] þ sjûD y[1]
mû(' ',s)[(É1+Òsi)Ê.+É1+Òsj]
bûmû(m=(Òm)Ò' ',sj)©m=ô(÷Òm)Ò' ',si
b[0;]ûb[;0]û0 þ bû,b þ bûb/ÉÒb
m[;0]û^\m[;0] þ m[0;]û^\m[0;]
mû,m
iû0
dû1+0,Òsj ã Dist to next row, col

lp:ý(i=Òb)Òlpz ã FOR loop
jûb[i]
m[j]û©/m[j-d]
iûi+1 þ ýlp

lpz:rû¢1Ùm

Figure 14: Optimized APL dynamic programming string shuffle

rûs SDyn3 y;i;m;si;sj;b;d;j
ã DP string shuffler (opt)
siûD y[0] þ sjûD y[1]
mû(' ',s)[(É1+Òsi)Ê.+É1+Òsj]
mû(m=(Òm)Ò' ',sj)©m=ô(÷Òm)Ò' ',si
bûm
b[0;]ûb[;0]û0 þ bû,b þ bûb/ÉÒb
m[;0]û^\m[;0] þ m[0;]û^\m[0;]
mû,m
dû1+0,Òsj ã Dist to next row, col
:for i :in ÉÒb ã FOR loop

jûb[i]
m[j]û©/m[j-d]
:endfor

rû¢1Ùm

Figure 15: DP APL string shuffle with control structures
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SDyn3 =. 3 : 0
: NB. x. is string to match

si =. >0 f y. NB. y. is substrings
sj =. >1 f y.

NB. Build DP matrix
m =. si +/ & (i. & #) sj
m =. mf 1 g. x.
b =. sj="1 m NB. Build worklist
b =. m=. b +.|: si="1 |: m
b =. ,0,0,"1 b
b =. b#i.#b

NB. Set edge of DP matrix
m =. (*./ \sj=(#sj)$x.),m
m =. ,(,. *./ \1,si=(#si)$x.),"1 m

NB. Distance to next row, column
d =. 1+0,#sj
i =. 0 NB. DP loop
while. i <#b do.

j=. i fb
m =. (+./(j-d) fm) j gm
i=. >:i

end.
f: m

)

Figure 16: DP J string shuffle with control structures
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