
Compiler Tools in APL�

Robert Bernecky
Snake Island Research Inc

18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9

Canada
+1 416 203-0854

bernecky@acm.org

Gert Osterburg
Technoma GmbH
Kurhessenstr. 14

Frankfurt/M
Germany

email: (IPSHARP) technoma@ipsaint

Keywords

Compilers, parsers, finite state automata, FSM, per-
formance.

Abstract

We present the design and implementation of APL
Intrinsic Functions for a Finite State Machine (also
known as a Finite State Automaton) which recog-
nizes regular languages, and a Parser which recog-
nizes a subset of context free languages, including
SLR(1), LALR(1), and LR(1). These are currently
being used on a commercial APL mainframe system
as part of a large real-time financial trading system,
where they are part of a compiler which translates
dealer specification statements into APL functions.
Use of these Intrinsic Functions more than doubled
the performance of the compiler.

In addition to making a significant performance
improvement for a large production system, we show
these functions to have value in effectively solving

�This paper originally appeared in the APL92 Conference
Proceedings. [BO92]

many common programming problems, especially
those which are inherently or apparently iterative.

1 Introduction

APL is a powerful interactive language which of-
fers primitives to assist in creation of new pro-
grams. Among these areexecute(â), which executes
APL sentences, andfix (Ìfx), which creates APL
functions from character tables. Given such primi-
tives, why would an APL programmer want compiler
tools?

Several reasons for wanting additional tools are:

� Many applications allow users to specify infor-
mation in the form of statements expressed not
in APL syntax, but in a form closer to a nat-
ural language, or in a form closer to unnatural
languages such as the more common program-
ming languages. Those statements must be an-
alyzed for syntactic correctness and semantic
content according to their rules, which differ
from the rules of APL. Such analysis typically
requires iteration, an area in which APL inter-
preters have traditionally performed poorly.

1

� Many problems which are inherently iterative,
or which are not obviously non-iterative, are
amenable to easy and fast solutions using com-
piler tool assists.

� Manually constructed syntax analyzers and
parsers are less likely to be fault-free than those
constructed with the aid of already debugged
compiler tools. Hence, code reliability is im-
proved by the use of extant tools.

Although a complete calculus of compiler tools is
beyond the scope of this paper, we have designed and
implemented a subset of such tools, which have done
an excellent job in practice on a number of applica-
tions.

2 A Calculus of Compiler Tools

Syntax-directed program development is an impor-
tant area of computer science: Considerable re-
search has resulted in the availability of a number
of compiler-writing aids such as LEX and YACC
[Joh86, LS86]. These tools have turned compiler
writing from an art into a science, making creation
of simple compilers an undergraduate term project.

The problems faced by APL application program-
mers are no different from those faced by program-
mers working in other languages. Having efficient
compiler tools available in APL expands the power
of APL in quite unexpected ways, as will be shown
below.

What sort of tools are required for a calculus of
compiler tools? Consider the following set of func-
tions which deal with syntax-directed program de-
velopment:

� FSMgenerator A Finite State Machine gen-
erator which takes definitions expressed as reg-
ular expressions, and generates an FSM table.

� PTgenerator A Parser Table generator,
which takes definitions of a grammar and gram-
mar type, and generates a Parser Table.

� FSM A Finite State Machine (or Finite State Au-
tomaton) which takes an FSM table and source
text, and produces a list of machine states and
partitions, which can be used to extract Tokens
from the text, and to perform certain classes of
validation on the text.

� PARSER A Parsing function, which takes a
Parser Table and Tokens, and produces a Parse
Tree.

� Interpreter An interpreter or compiler
function, which takes APL code fragments and
a Parse Tree, and produces APL programs, or
directly interprets the desired expressions.

These tools provide a compiler or interpreter gen-
erating device which is comparable to Lex and Yacc:

� FSMgenerator andFSM could be useful in
regular pattern matching. SHARP APL’s LO-
GOS, [AGDH86] for example, uses the termi-
nology, but has implemented only a very sim-
ple subset of regular expressions. With these
functions, full regular expressions could be ex-
pressed quite efficiently.

� FSMgenerator andPTgenerator would
make up a parser generator. That is, they gen-
erate Tables which, together with theFSM and
PARSER, constitute a proper parser.

Detailed discussion of the entire set of compiler
tools is beyond the scope of this paper, so we re-
strict discussion to theFSMgenerator, PTgen-
erator, and theFSM. A later section deals with
the definitions of these tools.

2

Token Example Regular Expression
nat 123 DIG *
integer 123 -123 (!+ !-) nat
real 1.3 -1.3 (!+ !-) ((nat *) !. nat +

nat !. (nat *))
expreal 1.3e3 real !e integer

names abc a123 ALPH (ALPH + DIG) *

currency USD DM (!U !S !D) + (!D !M)

Figure 1: Regular expressions for data validation

Regular Pattern recognized (p,q are
Expression instances of patterns)
!x the character x
! the empty string
p q p followed by q
p + q p or q
p * zero or more p

Figure 2: Regular expression definition

3 Regular Expressions

Regular expressions are commonly used in compiler
design as a way to compactly describe the legal con-
structs of a grammar. If we wish to construct a gram-
mar which accepts numbers, characters, and curren-
cies, we might construct regular expressions to de-
fine such a grammar. These allow precise definitions
in a general way. See Figure 1 for an example of
regular expressions for defining tokens.

In fact, any pattern which can be derived from the
recursive definition in Figure 2 can be recognized by
a Finite State Machine.

As noted earlier, the reliability of grammars based
on regular expressions and compiled by a generator
are more likely to be correct than those constructed
manually in an ad hoc manner.

Regular expressions are thus seen to be valuable
both in scanning for tokens in a traditional program-
ming language, or in the validation of statements in
a custom-designed end-user oriented command lan-
guage.

4 Compiler Tool Definitions

4.1 The FSM Generator Definition

The Finite State Machine (also known as a Finite
State Automaton (FSA) or FSM) generator function
is written in ISO standard APL, except for the use
of Ìsignal to signal errors during argument val-
idation. Performance of the generator itself is usu-
ally not critical, because a generator is typically used
only once, while its results are used many times.

The duty ofFSMgenerator is to take gram-
mar definitions expressed as regular expressions, and
produce a table which can be used as the left argu-
ment to theFSM Intrinsic Function. In working with
typical grammars, the effort involved to create a fi-
nite state machine definition by hand can be exces-
sive. TheFSMgenerator automates this process.

Proving that a finite state machine definition is
correct is also difficult. The use of a function to cre-
ate these definitions ensures that they are correct if
the grammar is correct.

4.2 The PTgenerator Definition

The PTgenerator function takes as argument a set of
grammar rules as shown in the second part of Figure
7. Rules are given by:

Nonterminal!
List-of-Terminals-and-Nonterminals

Terminals are identified by a leading ’$’ and are
assumed to be defined via regular expressions. After
performing some plausibility checks such as:

3

� does each Nonterminal occuring right of ’!’
also occur left of at least one rule?

� does each Nonterminal on the left occur also on
the right side (except for the first one, which is
considered to be the starting Nonterminal).

The parser starts constructing the parsing tables
according to the type (slr in Figure 7) of the gram-
mar. For algorithmic details we refer to Aho, et al
[ASU86].

The result of PTgenerator is either the GOTO and
Action tables (as shown in Figure 8) or an error mes-
sage indicating the reason why the construction of
the parsing table failed.

In the SWAP application discussed later, an
SLR(1) grammar is used. A LALR(1) generator also
exists, but it runs fairly slowly. LALR(1) is also the
technique used by Yacc.

4.3 The FSM Definition

A Finite State Machine derives its name from the fact
that its state after examining a new argument item is
dependent upon the current state of the machine and
the value of the new item, based on elements indexed
from a state table, denoted here as the FSM table.

Figure 11 is an APL model of the FSM primitive
as implemented in SHARP APL, a non-stacking fi-
nite state automaton.

TheFSM Intrinsic Function takes two arguments –
an FSM table and a list of text. Its result is an integer
list of the same shape as the text argument, whose
elements are the state the FSM entered after scanning
each character in the text. Negative elements indicate
the ends of partitions.

The FSM table is really two arguments rolled into
one: The first row is the one-originÌav indices of
characters which will be used to select a column
from the remaining rows of the table. Characters

which are not explicitly indicated in this row are as-
sumed to appear in the last column of the row. The
remaining rows of the FSM table are next-state val-
ues, selected by the current state of the FSM (initially
1), and the column indicated by the next character in
the argument. The rows are one-origin indices into
the rows of the FSM table excluding the first row (or,
zero-origin indices into the rows including the first
row).

Legal values in these rows are¢1 or legal one-
origin indices into the FSM table after the first row
has been dropped. Zeros and values greater than
1ÙÒFSMtable cause domain error. Other positive
values indicate the row of theFSMtable to be used
as the next FSM state.

Negative one indicates an illegal transition. This
causes the previously generated result element to be
negated, marking the end of a partition of legal char-
acters. The FSM resets to the initial state, and res-
cans the offending character from that state. A fail-
ure in this state causes negative one to be stored in
the current result element, and the machine restarts
on the next character, starting a new partition.

It was the choice of using negative result elements
to mark partition ends which led to the choice of ori-
gin one in the FSM definition. Otherwise, origin zero
would have been used, in keeping with the philoso-
phy of newer APL dialects. Other definitions for the
FSM would make things a bit simpler in this area.
For example, one might return a two-element boxed
list of lists in which the first is a partitioning, and the
second is merely the FSM states.

4.4 Benefits of the FSM

A Finite State Machine primitive offers several ben-
efits to the APL programmer: It is often easier to
create an FSM to solve a problem, than to under-
stand the series of APL primitives required to solve
the same problem efficiently and without resource

4

problems, such asWS FULL. The Unix tab expan-
sion problem noted below is a typical example of this
sort.

FSM arguments can be generated automatically,
based on regular expression definitions. These are
more reliable than hand-written programs, a bonus
for those who care about correct results as well as
good performance.

The excellent performance of FSMs is due to the
fact that the scanning process is a linear algorithm in
terms of the length of the input, and is more likely
more efficient than hand-written programs.

4.5 The PARSER Definition

PARSER is a model for a Finite State (stack) Ma-
chine. PARSER, as shown in Figure 12, recognizes
a subset of context free languages among which are
SLR(1), LALR(1) and LR(1). The speciality of
the subset consists of the bottom up technique and
the fact that the parser only looks ahead 1 token.
The generality comes from the device generating the
parsing tables.

Although automatic generation of code generators
may result in poor performance, our experience in
the applications arena shows the contrary: “hand-
made” systems are quite often poor compared to
those generated by compiler tools.

4.6 Inclusion of Semantic Functions

It is desirable to be able to include functions which
implement the semantics of the language into the
parser. One way to associate semantics is an alge-
braic one which fits nicely into APL. Consider the
rules of the grammar definition in Figure 3, which is
a trivial language for adding up ones.

Associating a function with each rule, as in Fig-
ure 4 allows one to translate the parse tree into an
expression over this set of functions.

Expr =: Expr + Expr
Expr =: (Expr)
Expr =: 1

Figure 3: A simple grammar for adding ones.

F1 : Expr Expr =: Expr Add 2 numbers
F2 : Expr =: Expr Identity
F3 : nil =: Expr Constant 1

Figure 4: Associating functions with grammar rules.

5 Case Studies

The following case studies offer several examples of
the use ofFSM andPARSER in actual production
applications as well as concocted situations.

5.1 Unix Tab Expansion

UNIX1 character strings often contain embedded
tab characters. These are understood to represent
typewriter-like tabs, in which tabstops are set in the
first column, and every eight columns thereafter. Ex-
pansion of these character strings, replacing tabs by
an appropriate number of spaces, is a typical exam-
ple of APL in which the obvious solution involves an
iteration for each tab character or newline character.
This is computationally expensive, and ugly enough
that we will not show it here.

An advanced APL programmer will eventually
come up with an algorithm based on partitioning,
such as that in Figure 5, by recognizing that a tab
or newline forces the eight residue of the cursor po-
sition to zero, and that other characters increase the
residue by one. Such an algorithm outperforms the
naive iterative algorithm by a factor of 25 or more.

However, time constraints and programmer skills
often limit our ability to see efficient non-iterative

1UNIX is a trademark of AT&T.

5

approaches, and performance of the application suf-
fers as a result of this.

The use of an FSM to perform the tabbing, as
shown in Figure 6, produces a function which outper-
forms the best partitioned APL solution by a factor
of two. Furthermore, it may be easier to comprehend
by a relatively inexperienced programmer.

Here is how the FSM-based tabber works. The
purpose of a tabber is to replace tab characters by an
appropriate number of blanks. The number of blanks
depends on the eight residue of the column number
in which the tab occurs. Assume that the first column
is column 0. A tab there will take us to column 8,
implying 8 blanks. A tab in column 6, however, will
only produce 2 blanks. The 8 residue of the column
number of the first tab is merely the number of char-
acters preceding the tab. Therefore, we know how to
process the first tab.

But what about later tabs? That’s easy, it turns out,
because the eight residue at any tab character will
always be zero, so we can start counting from zero
again. This means that a partitioning of the array on
tabs, and counting characters in each partition, gets
us close to the solution.

But what about newline? That’s easy as well, be-
cause the only effect of newline is to set us counting
from zero again.

Recognition of these facts leads us to the parti-
tioned tabber function in Figure 5. Now, let’s do it
using the FSM. Here is the FSM matrix used by the
code in Figure 6:

Ç rûtabber2 ×;i;pv;pv2
[1] ã UNIX Partitioning Tabber
[2] pvû×=tab
[3] pv2û×=cr
[4] iû,8-1+8Í(pv©pv2) ¢2êÒpv
[5] rû1+(~pv2)«(pv2©pv)\i
[6] ×[pv/ÉÒpv]û' '
[7] rûr/×

Ç

Figure 5: Unix tabber using partitioning.

Ç rûtabber ×;i;rm
[1] ã UNIX FSM Tabber
[1] rûtabfsm fsm ×
[2] rû(8Ò1), 8 7 6 5 4 3 2 1[Ír]
[3] iû×Åtab
[4] ×[i/ÉÒi]û' '
[5] rûr/×

Ç

Figure 6: Unix tabber using FSM.

6

3 157 1
9 1 2

10 1 3
11 1 4
12 1 5
13 1 6
14 1 7
15 1 8
1 1 1
9 1 2
9 1 2
9 1 2
9 1 2
9 1 2
9 1 2
9 1 2

How do we interpret this? First, we recognize
that there are three classes of characters of interest.
These are newline (cr), tab (tab), and all others.
tab andcr have the property that they force us to a
column with an eight residue of zero. Other char-
acters merely increment the column number (This
simple example precludes backspace, linefeed, and
other control characters in the input) modulo eight.
TheÌav index oftab is 3, and that ofcr is 157, in
origin one. These appear in the first row of the FSM
table, indicating which column we will select a new
state from when the corresponding character is the
next one in the argument. The third column contains
a 1, merely as a placeholder, which will collect all
the non-interesting characters (C).

Note that, because there are no¢1’s in the FSM
table, that the result will consist of a single partition
only.

The FSM starts off in row 1 of the FSM table (the
row containing9 1 2). If we see a non-interesting
character C, the FSM picks the 2 as its new state.
Another C takes it to state 3, and so on, until it is in
state 8. Another C at that time takes it back to state 1.
Therefore, the FSM implements a modulo-8 counter

for C.
If the FSM encounters acr, it always goes to state

1, resetting the modulo-8 counter.
If the FSM encounters atab, it goes to a state

from 9 to 15, or state 1, depending on the state of the
FSM at the time.

The interesting part of all this is that the result of
the FSM is an integer list giving the state of the FSM
after processing the corresponding character of the
right argument. These states are then used by the
tabber function to index an integer list which is
then used with replicate to expand the tabs to an ap-
propriate number of blanks, after the tabs have been
replaced by blanks.

If we didn’t need the varying states of the result
for the index operation, the trailing rows of the FSM
table, which are otherwise identical, could be merged
into a single row.

Here is the FSM output of states for a simple text
list, in which tabs are represented byÊ, followed by
the result of indexing to obtain the replicate argu-
ment:

tû'TxÊisÊÊhere',nl','Êtoo'
Ìûfûtabfsm fsm t

2 3 11 2 3 11 9 2 3 4 5 1 9 2 3 ¢4
Ìûeû((8Ò1),÷É8)[Íf]

1 1 6 1 1 6 8 1 1 1 1 1 8 1 1 1
Ìûe/t

TxÊÊÊÊÊÊisÊÊÊÊÊÊÊÊÊÊÊÊÊÊhere
ÊÊÊÊÊÊÊÊtoo

5.2 Input Validation

One design problem with primitives in APL and
other languages [Ber91] is that they often domore
than we want them to do. TheÌvi verb in SHARP
APL was designed to assist in the validation of nu-
meric lists expressed as characters. The verb re-
turned a Boolean list marking valid and invalid nu-

7

meric entries in its argument. However, for many
applications, the generality ofÌvi is excessive – it
permits the inclusion of floating point numbers ex-
pressed in exponential format, such as123.45e6,
as well as complex numbers such as0j1. Such num-
bers, although perfectly valid in APL arrays, are of-
ten invalid in applications where they might repre-
sent part numbers or salaries. Of course, some of us
have imaginary salaries, but that’s not the point. Spe-
cific code is needed to validate such input, andÌvi
is inadequate to the task. What can be done?

Consider the following concocted specification of
input validation: We wish to validate a character list
of purported numbers. The numbers are allowed to
be integers or decimal numbers, but complex num-
bers are forbidden, as are numbers expressed in ex-
ponential format. Leading plus (+) or minus (-)
signs are permitted, but the APL high minus (¢) is
forbidden.

This can be done effectively in APL with use of
theFSM Intrinsic Function. TheFSMgenerator
could be used to generate the FSM table, but doing
it by hand will help to clarify how the FSM actually
operates.

We start with a list of valid characters with a ques-
tion mark at the end to indicate the invalid ones:

' +-.0123456789?'

We use these to start forming the table, then add
letters corresponding to states of the FSM. In the fol-
lowing, we have elided the columns corresponding
to the characters 3-9, to reduce the space required to
display the table.

State Signal characters
Name Id # ’ ’ + - . 0 1 2 ?
Initial i 1 i s s f d d d e
Digits d 2 i e e f d d d e
Sign s 3 e e e f d d d e
Fraction f 4 i e e e f f f e

This table can be read as follows: If we are in the
initial state i, a blank will leave us in the initial state
i. Thus, leading blanks are skipped. A sign will take
us to state s, indicating a signed digit. A digit will
take us to state d, indicating digits. A period will
take us to state f, indicating fractional numbers.

If we are in state s, we have already seen a sign,
and are looking for the rest of the number. A blank
takes us to the error state e, indicating a lone sign
with no number following it. Another sign also leads
to state e, indicating adjacent signs, such as+-. Fur-
ther digits take us to state d, to skip over remaining
digits.

If we are in state d, we have seen part of a valid
number, which may or may not be signed. A blank
takes us back to the initial state i, where we restart
the scan on the next character. A sign or illegal char-
acter takes us to the error state e, indicating a sign
in the middle or at the end of a number, or an illegal
character.

The reader is left to comprehend state f.
If we replace the state-marking characters with nu-

meric indices, we are left with the following FSM
table (again with columns for 3-9 elided):

1 3 3 4 2 2 2 -1
1 -1 -1 4 2 2 2 -1

-1 -1 -1 4 2 2 2 -1
1 -1 -1 -1 4 4 4 -1

Catenating theÌav indices of the signal charac-
ters onto the top of this table gives usfsmv, the left
argument to the FSM. Here are two examples of its
use on legal and illegal arguments:

fsmv fsm '45 0 -1 +134 .5'
2 2 1 2 1 3 2 1 3 2 2 2 1 4 ¢4

fsmv fsm '3j5 1e5 45+9'
¢2 ¢1 2 1 ¢2 ¢1 2 1 2 ¢2 3 ¢2

The last item in the result is negative, indicating
the end of a partition. Valid partitions are positive

8

(except for the last one), and are separated by1s.
Catenating a blank onto the end of the argument, and
discarding the last result element fromfsm, simpli-
fies result analysis.

In practice, a validator such as this might examine
the result to ensure its validity (^/1Õ(fsmv fsm
×)>0), replace+ and- in × by ' ' and'¢', re-
spectively, and pass the result toÌfi to do the re-
maining work. IfÌfi is unable to do the job, the
fsm result is often useful in partitioning× to do the
work in APL in a more efficient manner.

5.3 SWAP Compiler

Reuters AG, of Frankfurt, Germany, operates SWAP,
a large APL-based real-time financial application
used in securities trading. This application has a very
high concurrent user load, and consumes significant
mainframe processor time, of which a large portion
is spent in analyzing and compiling user requests and
conditions, stated in a formal language.

The use of the compilation tools described here, in
particular, theFSM andPARSER, more than halved
the CPU time required for the compilations.

5.4 A Simple Calculator

Consider the example of a grammar to describe a
simple calculator. Let’s look at it, to see how the
compiler tools would work to construct it.

The input to the compiler generator, which are to-
ken definitions, syntactic definitions, and a set of se-
mantic functions, are shown in Figure 7.

The semantic model associates with each syntac-
tic rule a function which has as many arguments as
there are symbols on the right side of the rule and
produces a result. Therefore, the calculator gram-
mar leads to the functions which appear in Figure 8.
The functions which interpret the semantics are as
follows:

compile sc (,)

/* 1. Token Definitions */
lex
$lparen = !(
$rparen = !)
$one = !1
$plus = !+
end

/* 2. Syntactical definitions */

/* 3. Semantics */
/* E is Expression */
/* T is a term */
/* R is rule number*/
/* APL-function */
syntax slr
/*R1*/ E ! E $plus Tf E + T g
/*R2*/ jj T f T g ;
/*R3*/ T ! $lparen E $rparenf E g
/*R4*/ jj $onef â $oneg ;
end

Figure 7: Compiler generator input

9

Fn Definition Res Description
f1 E plus T E Add E and T
f2 T E Return T
f3 (E) T Return E
f4 one T Convert to numeric

Figure 8: Calculator grammar functions.

State GOTO table Action table
E T + 1 () end

B 1 3 2 0 5 0 4 0
E 2 0 0 6 0 0 0 0

3 0 0 ¢2 0 ¢2 0 ¢2
4 3 7 0 5 0 4 0
5 0 0 ¢4 0 ¢4 0 ¢4
6 8 0 0 5 0 4 0
7 0 0 6 0 9 0 0
8 0 0 ¢1 0 ¢1 0 ¢1
9 0 0 ¢3 0 ¢3 0 ¢3

B = Begin State
E = End State

Figure 9: Parser table generated for calculator

f1:×[1]+×[3]
f2:×
f3:×[2]
f4:â×

The Parser Table generator,PTgenerator, in
turn generates the parsing table of Figure 9.

5.4.1 The Calculator Interpreter

Let’s walk through an example of the resulting cal-
culator in action:

Input '1+1+1'
ÙÙÙÙÙ

Tokennumbers 01234

In the resulting parse list, positive numbers iden-
tify the above tokens, and negative numbers identify
rules (functions). The parse list for the above exam-
ple is:

0 ¢4 ¢2 1 2 ¢4 ¢1 3 4 ¢4 ¢1

This bottom up parse list corresponds to the fol-
lowing derivation, in which the leftmost term is the
rule number being applied. Application of the rule
generates the next line in the derivation.

R4 1+1+1
R2 T+1+1
R4 E+1+1
R1 E+T+1
R4 E+1
R1 E+T

E

This derivation translates to the following postfix
expression (assuming a functionN which gets the
next available input token):

((((N f4)f2),N,(N f4))f1,N,(N f4))f1

The above translates to an APL expression when
read from right to left (using strand notation):

f1 (f4 N) N (f1 (f4 N) N (f2 f4 N))

Note that these operations can be performed au-
tomatically. Also, the generator can derive from the
semantic definition off2 that it in fact is the identity
function and therefore can be omitted in the expres-
sion to be executed.

6 An FSM table generator

In order to generate FSM tables based on regular ex-
pressions, the lexical and syntactic definitions in Fig-
ure 10 are required, as well as the following APL
functions:

10

� STAR This function constructs, based on the ar-
gument fsm, a fsm1 which recognizes all fsm-
patterns an arbitrary number of times.

� CAT Constructs an fsm which recognizes all
possible catenations of pattern from the left and
right argument fsms.

� PLUS Constructs an fsm which recognizes ei-
ther a pattern from the left or right hand argu-
ment fsm.

� IDENTITY Simply return the argument.

� CHAR Construct the fsm which recognizes the
given character.

� EMPTY Construct a fsm which recognizes the
empty list.

The algorithms used to implement these functions
can be found in the literature, such as Aho, et al.
[ASU86] It is possible to implement such functions
rather quickly (using the additional concept of non-
deterministic FSM’s). In practice, one might use
slightly more complicated and efficient algorithms.

7 Problem Areas

There are several potential problems with the Finite
State Machine primitive:

� There is no need, per se, for an FSM primitive.
It is easily written directly as an iterative APL
function. The performance of such a function
in traditional interpreters, however, argues for a
primitive, AP, or associated function. However,
is performance an argument for new primitives,
or merely an argument for higher performance
APL interpreters and compilers? Stronger ar-
guments for a primitive are those of utility and
correctness. We sidestepped this argument by

compile fsmgenerate (,)

lex /* Scanner def*/
/* Strings of length 1 */
$char = !ANYCHARACTER
/* empty string */
$empty = !’ !’
/* left paren */
$lparen = !(
/* right paren */
$rparen = !)
/* or operation */
$plus = !+
/* Kleene’s star function */
$star = !*
end

syntax slr
/* Syntax def – semantic def*/
E! E $starfSTAR Eg
j E T fE CAT Tg
j E $plus TfE PLUS Tg
j T fIDENTITY Tg
;
T ! $charfSIMPLE $CHARg
j $emptyfEMPTYg
j $lparen E $rparenfIDENTITY Eg
;

Figure 10: Sample FSM table generator

11

using an Intrinsic Function instead of defining a
new primitive.

� The FSM table for the FSM primitive can get
excessively large. Consider an FSM machine
definition which decodes variable-length data
records. These records typically consist of a
two-character count of the data which follows,
followed by the data itself, and more records
of the same type. An FSM to decompose
these would require more than 65536 states,
and would needlessly examine every character
of the argument. A straightforward iterative
APL function might run considerably faster,
and not require the large amounts of FSM def-
inition storage which the FSM definition re-
quires. CRC calculations are even larger, re-
quiring2*32 states or more.

An anonymous reviewer of this paper noted
that:

Programming paradigms based
on FSAs are a current area of re-
search and a literature search should
turn up other work on language sup-
port for FSAs. Very powerful FSA
table compression algorithms have
been developed that solve some of
the problems cited and may signif-
icantly extend the domain of prob-
lems addressed by FSAs.

We endorse such a search, although time pres-
sure has precluded inclusion of specific refer-
ences in this paper.

� Most APL systems running on Unix platforms
offer the ability to call Yacc and Lex, as well
as other utilities, from APL. Given this, why
is Yet Another Function required? One reason

was that our platform was IBM’s MVS operat-
ing system, not Unix. A second reason is that
the primitives do not currently offer all of the
generality of the Unix tools, and hence may be
considerably more efficient. Since we have not
made timings of both sets of tools on a Unix
platform, we were not able to test this con-
jecture. Finally, Yacc and Lex make certain
types of syntax analysis difficult or impossible.
Raul Rockwell, of Carnegie Mellon University,
described problems (private communication) in
trying to use them to describe the syntax of
J[HIMW90].

8 Implementation Notes

The FSM and PARSER described above, as well
as other performance-critical functions, were im-
plemented on SHARP APL/370 as Intrinsic Func-
tions. Intrinsic Functions appear to the user as locked
APL functions, but are, in fact, written as assembled
or compiled code. The design and implementation
of Intrinsic Functions support in SHARP APL was
done by Leigh Clayton, of the APL Software Divi-
sion of Reuters Information Systems (Canada) Lim-
ited.

Intrinsic Functions offer a simple way to provide
high-performance functions to specific APL users
without being forced to deal with the detailed de-
sign issues facing those who design APL primitives
for use by the entire APL community. They can be
tailored to meet the needs of specific applications,
rather than being general tools.

9 What Next?

A rather obvious redefinition of the FSM, which
is worthwhile considering as a language primitive,

12

would take a two-element boxed left argument, in-
stead of the current integer argument. The second
item would be the integer table formed from all but
the first row of the current argument. The first item
would be a list of characters, corresponding to the
columns of the second item. A system with hetero-
geneous arrays might merely allow the first row of
the argument to be boxed. The use of heterogeneous
arrays in this way has some performance impact, and
also increases FSM table storage, but these are not
necessarily serious obstacles.

This extension, in itself, is of marginal value, but
other definitions allow more general capabilities than
those in our FSM. Two possible extensions come to
mind:

� Instead of having a list of characters as the first
item, it would be possible to have a list of lists
of characters. A text item would select an FSM
table column based on the presence of the item
in one of the lists. This would allow a smaller
FSM table in common circumstances, such as
placing the digits from zero to nine in a single
column, not possible in the definition presented
here.

� A more interesting extension is possible in J
or dialects of APL which permit tacit defini-
tion and gerunds, as described by Bernecky and
Hui[BH91]. This is to embed selection verbs
directly into the list. This would allow more so-
phisticated capabilities in recognition. For ex-
ample, it would be easy to extend the definition
to numeric right arguments, and pick a column
based on the range of the number. Histograms
come to mind as a possible application of this
extension.

The extension of arguments to include tacit
verbs[HIMW90] represented as gerunds offers
significantly increased power in the language,

and should be examined in detail.

One problem with these tools is that it is difficult
to associate Action Routines with each state change,
and to describe the arguments to such routines. Since
J offers the capability to create function arrays as
gerunds, J may be better equipped to deal with this
problem. An added question is whether J can imple-
ment the FSM directly, perhaps as a scan.

Another problem is that Lex, Yacc, and our com-
piler tools are not really adequate for the develop-
ment of “real” compilers or interpreters, because one
can often construct smaller, better performing pars-
ing tables by hand. Since performance is usually a
critical issue in compilers, and since programming
language syntax and semantics are usually fairly
static, the effort required to manually create better
parsing tables often pays off.

However, in the area of applications program-
ming, rapid and significant changes in requirements
are quite common. In such cases, the benefits of
compiler tools are obvious, in terms of speedy de-
velopment and application reliability.

Perhaps the most significant contribution of our
work is defining the FSM to return the list of inter-
mediate states, rather than the final state only. As
was shown in the examples, the intermediate states
are of great value in control of later computation.

13

References

[AGDH86] David B. Allen, Leslie H. Goldsmith, Mark R. Dempsey, and Kevin L. Harrell. LOGOS: An
APL programming environment.ACM SIGAPL Quote Quad, 16(4):314–325, July 1986.

[ASU86] Alfred V. Aho, R. Sethi, and J.D. Ullman.Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[Ber91] Robert Bernecky. Fortran 90 arrays.APL-CAM Journal, 13(4), October 1991. Originally
appeared inACM SIGPLAN Notices, 26(2), February 1991.

[BH91] Robert Bernecky and R.K.W. Hui. Gerunds and representations.ACM SIGAPL Quote Quad,
21(4), July 1991.

[BO92] Robert Bernecky and Gert Osterburg. Compiler tools in APL.ACM SIGAPL Quote Quad,
23(1):22–33, July 1992.

[HIMW90] Roger K.W. Hui, Kenneth E. Iverson, E.E. McDonnell, and Arthur T. Whitney. APLn? ACM
SIGAPL Quote Quad, 20(4):192–200, August 1990.

[Joh86] Steve Johnson.UNIX Programmer’s Manual: Supplementary Documents 1, chapter Yacc: Yet
another Compiler Compiler. University of California, Berkeley, CSRG, 1986.

[LS86] Lesk and Schmidt.UNIX Programmer’s Manual: Supplementary Documents 1, chapter Lex –
A Lexical Analyzer Generator. University of California, Berkeley, CSRG, 1986.

14

Ç zûÁ rbefsm ×;Ìio;i;s;n;fs;k
[1] ã apl model of finite state machine intrinsic function
[39] kûÌioûsûiû1 ã initial state and index.
[40] zû(Ò×)Ò666 ã initialize result. (values are unimportant).
[41] Ìsignal(0=Ìnc 'Á')/domerr
[42] Ìsignal(1¨ÒÒ×)/rnkerr ã vector right argument
[43] Ìsignal(2¨ÒÒÁ)/rnkerr ã matrix left argument.
[44] Ìsignal(1¦1ÙÒÁ)/lenerr ã need at least two rows in left.
[45] Ìsignal(0Å¨Á[1;])/domerr ã no duplicates in row 0.
[46] Ìsignal(~Á[1;]ÅÉ256)/domerr
[47] ã prevent any index errors in fsm.
[48] Ìsignal(~(,fsû 1 0 ÕÁ)Å¢1,É1ÙÒÁ)/domerr
[49] Ìsignal(0ÅÒÁ)/lenerr ã no funnies with empty left arguments.
[50] ã
[51] ×û(¢1ÙÒÁ)ÄÌav[Á[1;]]É× ã map × to column numbers in left.
[52] fsml:ý(i>Ò×)Òfsmlz ã done?
[53] z[i]ûnûfs[s;×[i]]
[54] ý(¢1=n)Òfsmnp
[55] sûn
[56] fsmnxt:iûi+1
[57] ýfsml
[58] ã
[59] ã If s=1, Á[i] is illegal as token starter.
[60] ã If s¨1, char may or may not be OK. Rescan from state 1.
[61] fsmnp:ý(s=1)Òfsmg
[62] sû1
[63] ýfsml
[64] ã
[65] fsmg:sû1 ã reset to initial state, and continue scanning.
[66] ýfsmnxt
[67] fsmlz:ý(0ÅÒ×)Òfsmlzz
[68] ã Mark end of last partition.
[69] z[Òz]û-Íz[Òz]
[70] fsmlzz:

Ç

Figure 11: APL model of the Finite State Machine.

15

Ç rûÁ mparser ×;ac;accept;nt;nr;ls;EM;i;a;s;na;gt
[31] 'EM accept ls nr ac gt' üassign Á ã Separate Argument
[32] EMû1,EM ã EM is used as an internal stack afterwards.
[35] ntûÒdupout ls
[37] acceptûaccept,EM[2]
[40] rûÉiû0 ã Init Result (r) and loop Counter (i)
[41] ã now do for each input symbol (token):
[42] LP:naûac[sûEM[1];aû×[i+1]] ã which action to do next?
[43] ý(0>na)Òreduce ã either reduce action
[44] ý(0<na)Òshift ã or shift action
[45] ý(accept½s,a)Òacc ã or accepting input
[46] err:ý0,rû(-Òr),r ã or syntax error.
[47] shift: ã Shift action:
[48] ã push negative rule number(na) and
[49] ã current token (a) onto stack.
[50] EMûna,a,EM
[51] rûr,i ã append token no i to result
[52] ýLP,iû''Òi+1 ã increment input pointer
[53] reduce: ã Reduce action
[54] rûr,na ã append neg. rule number (na) to result.
[55] EMû(2«nr)[naûÍna]ÕEM ã pop stack (discard rule used)
[56] ãpush nextstate, leftsideofruleused
[57] EMû(gt[EM[1];Íls[na]],ls[na]),EM
[58] ýLP ã continue with next input symbol
[59] acc:rû(Òr),r ã Accept input

Ç

Ç üüNames üassign üüValues
[1] ãã Model strand assignment:
[2] ãã 'var1 var2 ... ' üassign EnclosedVector
[3] üüNamesû(vfe 0¨¡>Ò¡>üüNames)/üüNamesû' ' LTOV üüNames
[4] Ìsignal((ÒüüNames)½ÒüüValues)Ò5
[5] âvfe 'þ',¡>üüNames,¡>(<'û>üüValues['),¡>(î¡>(ÉÒüüValues)),¡>']'

Ç

Ç rûdupout ×
[1] rû((ÉÒ×)=×É×)/×

Ç

Figure 12: APL Parser model.

16

