
Array Morphology�

Robert Bernecky
Snake Island Research Inc

18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9

Canada
+1 416 203 0854

bernecky@acm.org

Abstract

Array morphologyis the study of the form, struc-
ture, and evolution of arrays. Anarray annotation
for a program written in an applicative array lan-
guage is an abstract syntax tree for the program,
amended with information about the arrays created
by that program. Array notations are useful in the
production of efficient compiled code for applica-
tive array programs. Array morphology is shown to
be an effective compiler writer’s tool. Examples of
an array annotator in action are presented, showing
its value in array morphology. Array morphology is
shown to provide methods for static detection of cer-
tain classes of programming errors.

Assertionsare a generalization of declarations that
offer significant benefits to application writers as
well as compiler writers. Although assertions are ex-
ecutable code, they can often be evaluated at compi-
lation time. Assertions, and therefore declarations,
may be represented as conjunctions, and are, there-
fore, conforming extensions to ISO Standard APL. A
domain conjunctionis offered as an example of how

�This paper originally appeared in the ACM SIGAPL APL93
Conference Proceedings. [Ber93]

assertions might be defined in APL or J.

1 Introduction

This paper definesarray morphologyand presents
some of the results obtained in the creation of two
pieces of an APL compiler – the tokenizer/parser and
the array annotator. The tokenizer creates anab-
stract syntax tree[ASU86], orAST, from the source
code. The annotator amends the AST with morpho-
logical information about the form and structure of
the arrays created by the execution of the program.

Annotation performs well for certain user-defined
APL functions, and poorly for others. Although dec-
larations can solve most of the problems, they are an-
tithetical to the design of APL. The use ofassertions
as generalized declarations is presented as a more
general solution to the problem.

2 Array Morphology

Array property analysis for applicative array lan-
guages has much in common with data flow anal-
ysis (DFA) [ASU86] for traditional scalar-oriented
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languages. However, such analysis differs from data
flow analysis in enough respects that it merits a dis-
tinct name. Hence, the analysis of array properties
will be denoted asarray morphology, since it in-
volves the study of the form, structure, and evolution
of arrays, just as geomorphology is the study of the
form, structure, and configuration of geologic struc-
tures.

Array morphology is a method for establishing
and tracking array properties. It is particularly useful
for the static determination of the type, rank, shape,
and value of arrays arising from the execution of
APL, J, and other array languages.

2.1 The Benefits of Array Morphology

Array morphology statically determines properties
of the arrays resulting from the execution of a
program written in an applicative array language.
Knowledge of these properties has benefits for both
interpreters and compilers, including:

� Elimination of run-time checking. If the argu-
ment types to a specific primitive are statically
determined and are known to be compatible for
the primitive, then run-time type checking for
that primitive can be eliminated. Since type
and conformability checking are responsible for
much of the overhead of traditional APL sys-
tems, their removal is key to improving the per-
formance of such systems. Similarly, knowl-
edge of rank, shape, and value allow other run-
time conformability checks to be eliminated.

� Static determination ofcompute type. The com-
pute type of an operation depends on the ar-
gument types. Typically, the compute type is
the more encompassing of the two types. For
example, adding Booleans to integers uses an
integer compute type, whereas adding complex
numbers to floats uses a complex compute type.

Static determination of compute type eliminates
yet another form of run-time overhead.

� Reuse of arrays. Knowledge of array properties
may permit them to be reused, thereby reduc-
ing the storage management services required
by the application. Reference count mainte-
nance may be simplified, by application of tech-
niques such as that proposed by Skedzielewski
and Simpson [SS88].

� Reduced descriptor management. Knowledge
of array properties can reduce the amount of ar-
ray descriptor management overhead in an exe-
cuting program.

� Fault detection. Several families of common
programming faults, or bugs, can be detected
statically, without ever executing the program.
This capability is similar to thelint facility in
C.

� Identities. A number of useful identities can be
detected at compile time, including many that
are too expensive to determine at run-time in an
interpreted environment.

� Arithmetic progression vectors. Some APL in-
terpreters [Ive73] include support forj-vectors
or arithmetic progression vectors. In their sim-
plest form, these encode expressions of the
form x+y«Éz as the listx,y,z. Further op-
erations using j-vectors as arguments are of-
ten able to be optimized, or to produce new j-
vectors as results, with large savings in execu-
tion time and storage. J-vectors are, however,
considered a curse by most implementors, as
they increase run-time overhead and are a main-
tenance nightmare. Static detection and propa-
gation of j-vectors offers the same benefits with
no run-time overhead.
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rûbenchloop n
ã No optimization.
rû(É0)ÒÄn ã Note that r isnotused.
nû2500«n
L:
ý(0<nûn-1)ÒL
rû1

Figure 1: Benchloop without declarations

� Shape calculus. Tracking of object shapes and
ranks may allow run-time code to be eliminated,
by allowing conformability checks to be made
symbolically at compile time. This has particu-
lar value when used in conjunction with partial
properties.

3 Abstract Syntax Trees

Abstract syntax trees, or ASTs, ease the problems
of analyzing and optimizing code undergoing com-
pilation by parsing free-form source code to create
a tabular representation of the same program in a
form that is amenable to rapid analysis and modifica-
tion. Figure 1 is the APL code for a simple program
benchloop. The first four columns of Figure 5 are
the abstract syntax tree created forbenchloop by
the tokenizer/parser.

3.1 AST Structure

The data structure used to represent abstract syntax
trees is a six-column table of arrays. Each row of
the table represents the computation performed by a
single APL primitive verb, adverb, or conjunction.
The format and content of each row of the table is:

Target The result of the computation of a single
primitive. It is the name of a noun in the original
program, or a temporary name generated by the

compiler, such asT_666. All temporary arrays
created by the parser are single assignment.

Á The left argument to the primitive, represented as
the 0-origin index of the AST row that gener-
ated the argument. The formal arguments to
the user-defined verb being compiled appear as
dummy AST entries at the top of the AST. For
monadic verbs, this element is elided.

Verb The verb, adverb, or conjunction associated
with this row. In the case of derived verbs, it
is the entire adverbial expression, such as+.«
for matrix product, or+/ for summation.

Axis The explicit rank [Ber87], if any, applied to the
verb. The rank is, in a sense, a regular, gener-
alized descendant to the irregularbracket axis
notation of ISO Standard APL [Int84]. Since
rank is not used in the examples presented here,
it does not appear in the tables.

× The right argument to the verb, represented simi-
larly to the left argument.

Index The list of expressions that index the array
argument, represented as a list of array names.
If the verb under execution is an indexed refer-
ence or indexed assignment, the syntax of APL
permits an arbitrary number of arguments to the
verb. If the verb is not an indexing expression,
this element is elided.

The annotator amends the AST with additional el-
ements, which are described in Section 5.1.

3.2 AST Creation

The AST is created by a tokenizer/parser similar to
that used in a direct code-generating compiler. The
difference is that, instead of emitting machine in-
structions, or code in a target language, the parser
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emits rows of the AST. Names of temporary results
are kept on a parser stack and removed at an appro-
priate time later in the parsing of the APL sentence.

The tokenizer operates in parallel on the entire
source program at once, without any looping. The
parser iterates over each token generated by the tok-
enizer.

4 Array Annotation

Once the AST has been constructed, it can be anno-
tated using array morphology and data flow analysis.
Array annotationis the static amendment of an AST
with information about the morphological properties
of the arrays created by the verbs of a program. Of
particular interest to the compiler writer are the type,
rank, shape, and value of such arrays. Other prop-
erties are also of interest, but have less immediate
value.

Data flow analysis and array notation are related,
but their main focus differs. Data flow analysis per-
forms several duties, including:

� Segmenting the source program intobasic
blocks. Basic blocks are straight-line code with
no entry or exit except at the top or bottom of
a block. Local analysisis performed indepen-
dently upon each basic block.Global analysis
is performed across all basic blocks.

� Tracing the lifetimes of variables, as defined by
their definitions and uses within and across ba-
sic blocks. In a traditional scalar compiler, these
def /use chainsare used for such purposes as
register allocation and code hoisting.

Even though most APL programs are loop-free,
having few basic blocks, data flow analysis is still
required for morphological analysis. The current an-
notator assumes that any named argument has the

properties of theclosest preceding definition of that
name in the AST. That is, ifd is the list of row num-
bers within the AST where the name in question is
defined, andu is the index of a use of that name, the
closest preceding definition isÓ/(d<u)/d. As will
be seen later on, this assumption can lead to difficul-
ties, so even APL requires proper data flow analysis.

The annotator uses the AST to infer properties
about the arrays created by the program being com-
piled, by examining each verb and adverb that can
potentially be executed during the lifetime of an APL
program. For example, it can deduce that the result
of the index generator verb is always an integer list.
This information may then be used later in the anno-
tation process to determine the properties of a verb
that takes the result of the index generator as an ar-
gument. This is denoted asforward morphological
analysis.

The annotator may also be able to deduce proper-
ties of the arguments to a verb. For example, ISO
Standard APL restricts the left argument of the in-
dexof verb to be a list. This information can be used
to deduce properties of the arguments of the earlier
verb that created the left argument. This is denoted
asbackward morphological analysis.

4.1 Assumption of Correctness

Array morphology assumes that the program under
analysis is correct. Deductions about array proper-
ties are based on the known characteristics of prim-
itives and arrays executing in an error-free manner.
Although the annotator can statically detect certain
classes of error in programs, other types of source
program errors will produce incorrect annotation,
which may cause incorrect results of other run-time
failure at unexpected locations in the program. This
has obvious implications for programs which depend
on event trapping for their execution.
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5 How to Annotate an Array

This section describes the array annotator and shows
its capabilities and limitations foreach class of prim-
itive it handles.

5.1 Annotated AST Structure

An annotated AST includes amendments made by
morphological analysis. These amendments are rep-
resented in the AST as columns containing:

Class The class represented by the array created by
each row of the AST. Its primary use is in prop-
agation of constants, which is useful in partial
evaluation. The class is represented as a char-
acter constant, such as'c' for constant,'v'
for variable, etc.

Type The result type of each entry. This is most sig-
nificant from the standpoint of compiled code,
because type is the major factor controlling
code generation. Type is maintained as one of
the following character constants:

b Boolean. One bit per element.

i Integer. Typically 32-bit or 64-bit integer.

f Float. Typically double precision IEEE
floating point.

z Complex. Typically a pair of floats.

c Character. Typically 8-bit, 16-bit, or 32-
bit bytes.

a Array. Typically 32-bit or 64-bit pointers.

Rank The result rank of each entry. This is repre-
sented as a scalar between 0 and the maximum
allowable rank array in the system.

Shape The result shape of each entry. This is rep-
resented as an integer list of zero or more ele-
ments.

Value The result value of each entry. This value
is usually only known for constants and entries
whose value is determined by constant propa-
gation.

Unknown entries are represented as empty lists.
Figure 5 shows two abstract syntax trees for

benchloop after the array annotator has processed
it. One represents the original program as shown in
Figure 1; the other reflects the program in Figure 4,
after the introduction of declarations. Since the axis
and index columns are empty in this example, they
have been elided from the figure.

5.2 Annotation Methodology

During array annotation, information about the argu-
ments to each verb is analyzed on a verb-dependent
or derived-verb-dependent basis. Appropriate entries
are made in the AST as information about type, rank,
shape, and value is deduced. Tentative entries are
never made – once an AST annotation entry is filled
in, it is never changed.

This lack of tentative behavior is required because
of the dependency of annotation on earlier annota-
tion decisions. If an early decision turns out to be
wrong, it may invalidate an arbitrary number of later
annotation decisions. Therefore, the annotator takes
a conservative approach and only fills in entries when
there is no doubt as to their content. As will be
shown later on, this isn’t quite true, but it is quite
effective.

This single-assignmentapproach permits the en-
tire AST to be processed in parallel, at least concep-
tually. In the current annotator, each family of verbs
(e.g, all dyadic scalar verbs (plus, minus, times, di-
vide, maximum, nand, nor; all reductions, etc.) are
analyzed in parallel. Iteration over the AST contin-
ues until no further entries can be filled in.
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Except as noted below, the annotator does not cur-
rently propagate value information or perform partial
evaluation based on known values.

The remainder of this section describes how each
family of related APL primitives are handled. Most
of the relevant properties are shown in Figure 2. For
simplicity in presentation, some of the properties
shown in the figure are approximations.

Indexed ReferenceAPL’s anomalous syntax for in-
dexing permits the rank of the argument array to
be deduced statically. For example, indexing of
a list in APL is written asx[i] and indexing
of a table is written asx[i;j].

The rank of the result is deducible if the index-
ing arguments have known ranks. The result
rank is the sum of the ranks of all the indexing
arguments. In the case of elided indexing argu-
ments, to select entire rows or columns, as in
x[i;] to pick row(s)i fromx, the rank of the
result increases by one for each elided index.

The shape of the result is the catenation of the
shapes of the indexing arguments, except when
an indexing argument has been elided. In that
case, the element of the result shape that corre-
sponds to the elided index is the corresponding
member of the shape of the array being indexed.
It is only when that shape is also known that the
result shape can be fully determined.

Indexed Assignment Indexed assignment can
change the type of the array being assigned
into. Therefore, indexed assignment data flow
analysis and array morphology are conservative
in their treatment of type.

Indexof Indexof verifies that its left argument is a
list or is of unknown rank, and establishes a
rank of 1 (list) for the left argument if its rank
was previously unknown.

Name Verb Result Result Result
type rank shape

Conjugate + T × ÒÒ× Ò×
Negation - T × ÒÒ× Ò×
Signum « I ÒÒ× Ò×

Reciprocal ß F ÒÒ× Ò×
Power ofe * F ÒÒ× Ò×

Ceiling Ó I ÒÒ× Ò×
Floor Ä I ÒÒ× Ò×

Magnitude Í T × ÒÒ× Ò×
Logical not ~ B ÒÒ× Ò×

π times Ï F ÒÒ× Ò×
loge ð F * *
Add + Á MT × * *

Subtract - Á MT × * *
Multiply « Á MT × * *
Divide ß F * *
Power * Á MT × * *

Logarithm ð F * *
Maximum Ó Á MT × * *
Minimum Ä Á MT × * *
Residue Í Á MT × * *

Less than < B * *
Not greater ¤ B * *

Equal = B * *
Not less ¦ B * *

Not equal ¨ B * *
Or © B * *

And ^ B * *
Nor ¹ B * *

Nand ° B * *
IndexR ×[i] T × * *
IndexA ×[i]û Á MT × ÒÒ× Ò×
Upgrade è× I 1 1ÙÒ×

Downgrade ç× I 1 1ÙÒ×
Shape Ò× I 1 ÒÒ×

Reshape ÁÒ× T × Ò,Á ,Á
Assign û T × ÒÒ× Ò×
Rotate Á÷× T × ÒÒ× Ò×

Reversal ÷× T × ÒÒ× Ò×
Rotate Áá× T × ÒÒ× Ò×

Reversal á× T × ÒÒ× Ò×
Transpose ô× T × ÒÒ× ÷Ò×
Transpose Áô× T × * *

Take ÁÙ× T × * Á
Drop ÁÕ× T × * *
Set ÁÅ× B ÒÒÁ ÒÁ

Indexof ÁÉ× I ÒÒ× Ò×
Integers É× I 1 ×
Catenate Á,× Á MT × * *
Replicate Á/× T × 1ÓÒÒ× *

* – too complicated for table
T – type
MT – maximum of types

Figure 2: Morphological properties of verbs
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Index Generator If the argument value is known,
the result shape is established.

Catenate The result shape is more complicated, but
is roughly the shape of one argument except
along the axis of catenation, where it is the
sum of the shapes of both arrays along that
axis. Treatment of scalars and degenerate ar-
rays complicates matters considerably.

Reduce There are too many cases of reduction to
enumerate here. Commonly used reductions
have a Boolean (all, any) result or a result type
which is the same, ignoring blowup, as the argu-
ment (summation, maximum). The result rank
is0Ó¢1+ÒÒ×. The result shape is the argument
shape with one element removed, depending on
the axis of reduction.

Inner Product The inner product conjunction has
an immense number of cases, again too
many to present here. The result rank is
0Ó¢2+(ÒÒÁ)+ÒÒ×. The result shape is the
catenation of the two argument shapes, with the
trailing element of the left argument shape and
the leading element of the right argument shape
elided. Type analysis is fairly complicated, be-
ing based on both verb arguments to the con-
junction as well as both array arguments to the
derived verb. Nonetheless, it can be done, and
the resulting code to support it is surprisingly
short.

Outer Product Outer product is handled similarly
to dyadic scalar verbs, except that outer prod-
uct pairs each element of one argument with the
entire other argument. Thus, the result type is
identical to that of dyadic scalar verbs. The re-
sult rank is the sum of the argument ranks, and
the result shape is the catenation of the argu-
ment shapes.

5.3 Loops

The presence of loops in programs makes it possible
that the set of definitions entering a basic block may
conflict. Such a conflict may merely mean that gen-
erated code quality will suffer. It may also mean that
the program has a bug in it. Consider the following
code fragment and the basic block starting with label
lp :

kû5
lp: kûk+1
ý(k<1000)/lp

Upon entry from the first line, the variablek is an
integer scalar. The value upon entry from the branch
label, however, has unknown characteristics until the
entire basic block containing the branch tolp has
been analyzed. But it cannot be analyzed until the
characteristics ofk are known! How can this Catch-
22 problem be dealt with?

Several methods come to mind:

Greedy Take the reaching definition from the previ-
ous basic block at face value and analyze. When
the analysis is complete, compare the values en-
tering each block. If they differ, declare an error
in the program. In the example above, this ap-
proach would, by happenstance, work perfectly.

Merge Combine the morphological information
from different paths, taking the minimum of
their intersection. In the above example, this
would never resolve the type information ofk,
because the “don’t know yet” fields would take
precedence over the known ones.

Tentative Assume the basic block inputs are known,
in the same manner as the greedy method. See
if things work out at the end. If not, back off to
more conservative information and try again.
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Traceback Keep information which allows each
morphological deduction to be traced to its
source. If the sources agree at their confluence,
things are fine. If not, then the program is more
complex than we expect. For example, a func-
tion is may be called at times with matrix argu-
ments, and at other times with list arguments.
The YAT approach of generating separate code
for each instance of such programs makes sense
here.

5.4 Oh, what a tangled web we weave!

Strong threads connect executing APL primitives –
array properties resulting from one primitive may di-
rectly or indirectly affect the properties of many oth-
ers. Inability to deduce a property for one primitive’s
result may have a domino effect, making it impossi-
ble to deduce a large number of properties of arrays
that are dependent upon the first one. Just as pulling
a single thread from a cloth may cause its destruc-
tion, so the failure to deduce a single array property
may cause many further annotations to fail.

On the other hand, this same sensitivity suggests
that an interactive compiler that is able to ask the user
for assistance in determining properties of specific
arrays may be of great utility. Such a compiler might
suggest: “If you declare the type ofx on line 23 of
functionfoo, I can increase the deduction score for
type and rank from 30% to 97%.”

Presentation of array connectivity can be made as
a spider web on a graphical user interface, and the
primitives and arrays colored in a way related to the
presence or lack of morphological information re-
lated to each of them. However, as tempting as such
a presentation might be, it is of little use to the un-
sighted and color blind among us, so other presenta-
tion facilities are required as well.

The connectivity of morphological array informa-
tion among primitives suggests that there may not be

large differences among primitive families in terms
of their impact on annotation. Rather, their physical
position in the source program may be a more criti-
cal factor in measuring the impact of a missing array
property.

In order to evaluate the relative impact of anno-
tators for different families of primitives, annotation
was performed onls, Mike Jenkins’ model of the
APL\360 domino function [Jen70], with each fam-
ily disabled independently.

The results of this are shown in Figure 3. Not
surprisingly, failure to propagate assignment infor-
mation caused severe problems. Scalar verbs and
reshape took a heavy toll, likely due to their popu-
larity. Indexed reference and, to a lesser degree, in-
dexed assign caused trouble as well. Indexing gives
strong hints as to rank, which suggests that more reg-
ular languages, such as J, may have more problems
with array morphology than APL does. See Section
12 for more information on this topic.

More study of real world applications is called for,
because it is clear that examination of a single pro-
gram is not an adequate measure of annotator sensi-
tivity.

5.5 How to Annotate an Array, Really

Manual annotation of an array is a good way to un-
derstand how general annotation works. It is a relax-
ation algorithm much like solving a crossword puz-
zle or cross sums:

� Start with an AST for the program you want
to annotate. Catenate as many columns on the
AST as you have fields you want to annotate.
The figures in this paper, for example, annotate
type, rank, shape, and value.
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Disabled Number of deduced items
Handler Type Rank Shape Value
Total possible 174 176 174 174
All enabled,
no declarations 99 152 15 15
All enabled,
w/declarations 174 176 22 15
Assignment 49 51 1 13
Monadic scalars 88 143 15 15
Dyadic scalars 60 92 6 15
Indexed assign 109 156 22 15
Indexed 89 71 8 15
reference
Grade 146 160 20 15
Rotate, reversal 172 163 20 15
Shape 113 161 13 15
Reshape 95 155 22 15
Transpose 170 167 15 15
Reduction 133 127 9 15
Take 113 170 15 15
Drop 126 130 20 15
Inner product 157 165 15 15
Outer product 126 130 20 15
Set membership 174 176 22 15
Indexof 162 160 16 15
Index generator 163 163 21 14
Catenate 101 143 10 15
Replicate 171 173 22 15

Figure 3: Effect on annotation ofls of selectively
disabling annotation handlers.

� Delete, modify, or add family handler functions
as required, to perform the specific annotation
you desire.

� Use information from entries you have already
filled in to deduce properties of missing entries.
Fill in those entries. It does not matter if you
miss an entry on one pass through all family
handlers, as long as you get it on a later pass.
It is important, however, to do some work on
every pass, filling in at least one annotation en-
try.

� Keep going until the table stops changing.

Doing non-zero work on each iteration guarantees
completeness, because the table entries must even-
tually fill. It also allows a certain amount of sloppi-
ness to exist harmlessly in the annotation algorithms.
Such behavior is characteristic of certain simple al-
gorithms and of unsynchronized parallel computa-
tion. The number of iterations required to fully an-
notate an AST with the current algorithm is no worse
than linear in the number of AST entries. This sug-
gests that annotation performance is better if multi-
ple entries are filled in on each pass.

6 The Impact of Declarations

Declarations can be of great value in array morphol-
ogy. Even though this is saying that it is easy to get
good exam scores if someone tells you the answers,
it turns out that a few hints go a long way. As shown
in the top of Figure 3, annotation ofls without dec-
larations is able to deduce the type of only about half
of the arrays created by the program. However, if
the annotator is told that the arguments are floating
tables, then the annotator score for type and rank de-
duction jumps to 100%, showing that morphological
analysis of programs can benefit substantially from

9



rûbenchloopb n
ã Enable optimization.
nû(É0)ÒÄn ã Maken an integer scalar.
nû2500«n
L:
ý(0<nûn-1)ÒL
rû1

Figure 4: Benchloop with declarations

a few declarations. This confirms Budd’s findings
regarding interprocedural analysis. [Bud85]

As a simple example of declarations in action,
consider the two versions of functionbenchloop
in Figures 1 and 4, and its two annotations in Fig-
ure 5.

The annotation ofbenchloop without decla-
rations was unable to deduce information because
it had no starting point. Adding the sentence
nû(É0)ÒÄn has the effect of makingn an integer
scalar after its execution. This gave the annotator
a starting point, thereby allowing deduction of type
and rank for the remainder of the items.

Wai-Mee Ching’s APL compiler [Chi86, CNS89]
requires the user to declare the arguments to the main
function being compiled. YAT also permits declara-
tions [GCDO86, GCDO87]. Even though declara-
tions go against the grain of traditional APL design,
their utility in obtaining good performance should
now be obvious.

6.1 The Compilation Unit

APL compiler writers have taken two approaches to
specification of the unit of code to be compiled. The
separate compilation approach, used by Wiedmann
[Wie83] and in ACORN [BBJM90, Ber90], permits
compilation of single functions, such as those that
are performance bottlenecks. It also permits con-
venient recompilation of small pieces of code dur-

ing development. The ensemble approach, taken by
Budd [Bud88], Ching [Chi86, CNS89], and Driscoll
[GCDO86, GCDO87]. accepts an entire APL appli-
cation as the compilation unit.

The single compilation approach offers speed
and convenience, whereas the ensemble approach
has the virtue of allowing interprocedural analysis
to distribute morphological information about user-
defined function parameters among the functions be-
ing compiled. This reduces the need for explicit dec-
larations within the compilation unit.

The unique advantages of both approaches sug-
gests combining them in a development platform
environment capable of preserving interprocedural
morphological information. This would provide the
benefit of global morphological analysis, as well as
permitting the compilation of single functions.

7 Identities

Well-written APL interpreters make substantial use
of identities, simply because the cost of doing so is
usually low and the potential gains are large. For ex-
ample, catenation of an empty list to another list need
not make a copy of the non-empty list as a result.
Catenate merely recognizes the identity and passes
the non-empty list as the result. Multiplication of an
array by the scalar1 can skip all mathematical cal-
culations for the cost of one comparison.

Although it is possible to detect certain of these
identities at compile time, it is not likely that many
of them will be detected in practice, simply because
people do not tend to write programs that way. Run-
time detection is probably still the mainstay of iden-
tities in APL.

Partial properties, discussed in Section 14, offer
the opportunity to reduce the cost of run-time iden-
tity detection and increase general system perform-
ance. In the case where a run-time check might de-
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tect an identity, it is possible that the check can be
eliminated totally, or made simpler, because of infor-
mation available from array annotation. In the case
where a run-time identity clearly cannot occur, a run-
time check for it can be eliminated.

8 Static Detection of Errors

Another potential benefit of array morphology is
static detection of programming errors. For example,
if an array is known to be rank3, and it is indexed
with a rank2 indexing expression, then the program
is faulty. Similarly, a character array as an argument
to logarithm is a bug in the source program.1

Annotators can make static conformability checks
between verb arguments. For example, rotate can en-
sure that its left argument, if known, is integer-valued
and of appropriate rank for conformability with the
right argument. This technique has merit because
any such check that can be performed at compile
time need not have run-time code generated for it.

Other errors can be statically detected using
knowledge of array properties. The potential bene-
fits of such error detection are substantial and merit
more study for both compilers and interpreters.

9 Performance and Triggers

Each iteration through the family handlers examines
all entries, even though there may not be anything to
gain by examining the majority of them. Annotation
of ls takes 21 iterations to stabilize, so poor per-
formance is highly visible. The treatment of all en-
tries on each iteration was done for simplicity, since
annotator performance is not a pressing issue for a
research tool.

1Or, it is an ad hoc assertion’s way of failing.

The question remains of how a production quality
annotator can perform efficiently without having all
family handlers know about the needs of each of the
other handlers. One solution is to keep atrigger bit
list marking each changed row, let the family han-
dlers be dispatched based on need, and use the trig-
gers to locate starting points for further annotation,
thereby reducing the workload.

10 Assertions

Declarationsare non-executable directives to a com-
piler, asserting truths about the program and its data.
Although they work well for what they do, they
are inadequate for more general assertions about a
computation.Assertionsare executable tests placed
within an application to perform specific tests upon
data, yet which have no effect upon the outcome of
the application. When an assertion fails, however,
it signals an event, to allow corrective action to be
taken, or notifies the user or application writer of a
problem.

Assertions are often used within applications to
prevent or limit damage to databases by verifying
certain properties of arguments before they are able
to affect the database incorrectly. For example, a text
database maintenance function might assert that its
argument is textual, rather than numeric, data. A bi-
nary search with an argument that is defined as being
sorted might issue an assertion that the argument is
indeed sorted.

Assertions are also used to improve the locality of
fault isolation. A large application may make asser-
tions about its input, or about intermediate results, in
order to halt execution immediately if the assertion
fails. The other choice, of allowing execution to pro-
ceed, muddies the tracks of the original problem and
makes fault determination more difficult.

Assertions and declarations have much in com-
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mon. Assertions may be viewed as nothing more
than executable declarations within a program. A
program may assert that its argument is a table
of floating point numbers by a sentence such as
assert (2=ÒÒx)^'f'=type x. This is tanta-
mount to a declaration in a compiled environment.

This suggests combining declarations and asser-
tions into a single mechanism, denoted merely asas-
sertions. The benefits of combining declarations and
assertions into a single mechanism include:

� unification of two previously disparate con-
cepts, simplifying the job of teaching and learn-
ing a language,

� providing a mechanism in which the work done
by declarations can be done by assertions at
either execution time or during the process of
compilation,

� provision of a formal mechanism for providing
declarations within APL, and

� specifying a formal mechanism for providing
assertions within APL, as opposed to the ad hoc
mechanisms now used by application writers.2

10.1 The Domain Conjunction

Discussions with Ken Iverson about assertions led to
the concept of adomain conjunction, denoted here as
when. Consider two verbswork andvalid. The
conjunctive expressionx work when valid y
returnsx work y if the result ofx valid y is
1. Otherwise, it signals an event.

In compiled code, some of the work done by
the domain conjunction could potentially be done at

2Currently, programmers write assertions using such diverse
mechanisms as intentional divide by zero, branch to fractional
line numbers, intentional syntax error, or vendor-dependent
event signalling capabilities.

compile time, rather than being deferred until exe-
cution. For example, in the above-mentioned exam-
ple of a binary search, it may be that the compiler is
able to statically determine that the argument which
is supposed to be in sorted order arose from an ex-
pression which guarantees its ordering. The code
to make this validation at execution could then be
elided. Contrariwise, if the argument was known to
not be sorted, an exception could be raised at either
compile or execution time.

Since assertion conjunctions are the same as any
other conjunctions in the language, they can be
added to existing dialects of APL and J with no
changes in language syntax or semantics.

10.2 Assertions and Compiled APL

Assertions need not generate code to be effective.
For example, assertions appearing as simple identi-
ties can have a substantial impact on potential code
quality.

Consider the insertion of the following two state-
ments into thels function:

aûa[;]ß1.0

bûb[;]ß1.0

These are equivalent, in a morphological sense, to
the floating table assertion made in Section 10. An-
notation will detect the index as an identity, produc-
ing the entire arraya as its result, with the benefit of
implying that the array is of rank2. The divide by
1.0 is also detected as an identity, but has the effect
of coercing the array type to floating.

In terms of array morphology, the effect of these
statements is significant. As noted in Section 6, the
effect of inserting declarations for the two function
arguments dramatically increases the amount of mor-
phological information obtainable.
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11 Constant Propagation

Constant propagation has not been taken very far in
this project, partly because there was not much op-
portunity for it to occur in the small suite of programs
used as test cases for the annotator. It will be inter-
esting to perform array morphology on a larger col-
lection of real world applications and see if this lack
of opportunity is typical of APL programs in general,
or if the test suite used thus far is anomalous.

12 Array Morphology and J

J is a generalization and rationalization of the ideas
of APL [HIMW90, Ive96]. Many of the rough edges
and anomalies of APL are gone from J, and it per-
mits creation of purely functional programs. One of
the anomalies that is gone is bracket indexing, which
means that array annotation based on examination of
indexing expressions can no longer make deductions
of rank. J also removes most other rank restrictions
on primitives. For example, indexof in J permits the
left argument to be of any rank, rather than limiting
it to rank1 as APL does.

Do these generalizations and rationalizations, as
desirable as they may be from the standpoint of lan-
guage design, teaching, and convenience, present
roadblocks to the annotation of J programs for com-
pilation? Not if one accepts the need for assertions
or declarations. In fact, many of J’s features, such as
static scoping, gerunds, and control structures, actu-
ally enhance compilability.

13 Roads Not Taken

No effort was made to examine the possibility of
common subexpression elimination (CSE) [ASU86].
Common subexpressions appear most frequently in

APL – as in Fortran – in subscript computations. Al-
though common subexpressions may not occur as
often in APL as in Fortran, their elimination may
have even more value in APL than in other languages
– APL’s common subexpressions tend to be array-
valued, rather than scalar-valued, so the potential for
performance and storage gains is substantial.

Constant propagation and partial evaluation can be
taken considerably further than they have been here.
The calculus of j-vectors and addressing polynomials
offer a large potential performance benefit.

Type-dependent optimizations are not presently
supported. These optimizations include detected
identities – the floor of a Boolean array need not
generate code – and strength reduction: multiply on
Boolean arguments can produce a Boolean result us-
ing logical and.

Another important area that remains totally un-
explored is the morphology of recursive data struc-
tures, particularly in relation to adverbs and conjunc-
tions. Support for such structures, known as boxed
or nested arrays, is an area where the performance of
current APL interpreters is generally deficient, hav-
ing little support for any but the simplest of special
cases.

14 Partial Properties

One of the by-products of array morphology is par-
tial information about the properties of arrays. Al-
though this area remains unexplored, it is potentially
rich. The following are typical of the sorts of infor-
mation that array annotation can provide:

� Indexing may determine some, but not all, of
the elements of a shape vector.

� A verb may deduce that one of its arguments is
numeric, but of unknown type.
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� The index generator may determine that its ar-
gument is a singleton, but cannot determine its
rank.

� An array may be known to be sorted in some
order, a fact that could be exploited by search
primitives.

� An array may be known to be a permutation of
a dense set of integers.

� An array may be known to be a set of valid in-
dices for another array.

Many other properties can be partially deduced.
This is another unexplored area which merits addi-
tional research.

15 Summary

Array morphology is a powerful tool for the static
determination of array properties in applicative lan-
guages including, but not limited to, type, rank,
shape, and value. This information is invaluable in
the creation of efficient compiled APL code.

When array morphology is inadequate, introduc-
tion of assertions or array declarations specifying
critical array properties can be of great utility. The
utility of array assertions suggests that a larger com-
pilation unit increases the potential performance of
compiled code, with no additional user-supplied in-
formation. Existing dialects of APL and J can sup-
port assertions as a domain conjunction, with no
changes to the syntax or semantics of the languages.
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T_10 15 Ò 3 i 0 i 0
T_11 ý 16
r û 2 i 0 1 i 0 1
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