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Abstract assertions might be defined in APL or J.

Array morphologyis the study of the form, struc- .

ture, and evolution of arrays. Aarray annotation 1 Introduction

for a program written in an applicative array lan- _

guage is an abstract syntax tree for the prograhhliS Paper definearray morphologyand presents

amended with information about the arrays create@Me of the results obtained in the creation of two

by that program. Array notations are useful in tH€ces of an APL compller—the_tokenlzer/parserand

production of efficient compiled code for applica€ array annotator The tokenizer creates ab-

tive array programs. Array morphology is shown gi7act syntax tregASU8E], or AST, from the source

be an effective compiler writer’s tool. Examples df°de- The annotator amends the AST with morpho-

an array annotator in action are presented, show‘ﬂg'cal information about the for_m and structure of

its value in array morphology. Array morphology ithe arrays_created by the execution qf the program.

shown to provide methods for static detection of cer-Annotation performs well for certain user-defined

tain classes of programming errors. APL_functlons, and poorly for others. Although dec-
Assertionsre a generalization of declarations thigrations can solve most of the problems, they are an-

offer significant benefits to application writers adthetical to the design of APL. The use aésertions

well as compiler writers. Although assertions are e8$ generalized declarations is presented as a more

ecutable code, they can often be evaluated at confjfinéral solution to the problem.

lation time. Assertions, and therefore declarations,

may be repre_sented as conjunctions, and are, thge- Array Morphology

fore, conforming extensions to ISO Standard APL. A

domain conjunctiors offered as an example of howyrray property analysis for applicative array lan-

*This paper originally appeared in the ACM SIGAPL ApLogUages has much in common with data f|OW anal-
Conference Proceedings. [Ber93] ysis (DFA) [ASU86] for traditional scalar-oriented



languages. However, such analysis differs from data
flow analysis in enough respects that it merits a dis-
tinct name. Hence, the analysis of array properties
will be denoted asarray morphology since it in-  ®
volves the study of the form, structure, and evolution
of arrays, just as geomorphology is the study of the
form, structure, and configuration of geologic struc-
tures.

Array morphology is a method for establishing
and tracking array properties. Itis particularly useful
for the static determination of the type, rank, shape,
and value of arrays arising from the execution of ®
APL, J, and other array languages.

2.1 The Benefits of Array Morphology

Array morphology statically determines properties ®
of the arrays resulting from the execution of a
program written in an applicative array language.
Knowledge of these properties has benefits for both
interpreters and compilers, including:

e Elimination of run-time checking. If the argu- ®

ment types to a specific primitive are statically
determined and are known to be compatible for
the primitive, then run-time type checking for
that primitive can be eliminated. Since type
and conformability checking are responsible for ®
much of the overhead of traditional APL sys-
tems, their removal is key to improving the per-
formance of such systems. Similarly, knowl-
edge of rank, shape, and value allow other run-
time conformability checks to be eliminated.

Static determination afompute typeThe com-
pute type of an operation depends on the ar-
gument types. Typically, the compute type is
the more encompassing of the two types. For
example, adding Booleans to integers uses an
integer compute type, whereas adding complex
numbers to floats uses a complex compute type.
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Static determination of compute type eliminates
yet another form of run-time overhead.

Reuse of arrays. Knowledge of array properties
may permit them to be reused, thereby reduc-
ing the storage management services required
by the application. Reference count mainte-
nance may be simplified, by application of tech-
niques such as that proposed by Skedzielewski
and Simpson [SS88].

Reduced descriptor management. Knowledge
of array properties can reduce the amount of ar-
ray descriptor management overhead in an exe-
cuting program.

Fault detection. Several families of common

programming faults, or bugs, can be detected
statically, without ever executing the program.

This capability is similar to théint facility in

C

Identities. A number of useful identities can be
detected at compile time, including many that
are too expensive to determine at run-time in an
interpreted environment.

Arithmetic progression vectors. Some APL in-
terpreters [Ive73] include support fpwectors

or arithmetic progression vectordn their sim-
plest form, these encode expressions of the
form x+yx1z as the listx,y, z. Further op-
erations using j-vectors as arguments are of-
ten able to be optimized, or to produce new j-
vectors as results, with large savings in execu-
tion time and storage. J-vectors are, however,
considered a curse by most implementors, as
they increase run-time overhead and are a main-
tenance nightmare. Static detection and propa-
gation of j-vectors offers the same benefits with
no run-time overhead.



r<benchloop n compiler, such ag_666. All temporary arrays

A No optimization. created by the parser are single assignment.
r«<(10)PLn a Note that r isnotused.

Nn<2500xn a The left argument to the primitive, represented as
L: the O-origin index of the AST row that gener-
+(0<n<n-1)PL ated the argument. The formal arguments to
rel the user-defined verb being compiled appear as

dummy AST entries at the top of the AST. For
Figure 1: Benchloop without declarations monadic verbs, this element is elided.

_ ) Verb The verb, adverb, or conjunction associated

» Shape calculus. Tracking of object shapes and \yith this row. In the case of derived verbs, it

ranks may allow run-time code to be eliminated, 5 the entire adverbial expression, suchras

by allowing conformability checks to be made ¢4, matrix product, of-/ for summation.

symbolically at compile time. This has particu-

lar value when used in conjunction with partiahxis The explicit rank [Ber87], if any, applied to the

properties. verb. The rank is, in a sense, a regular, gener-
alized descendant to the irregularacket axis
notation of ISO Standard APL [Int84]. Since
rank is not used in the examples presented here,
it does not appear in the tables.

3 Abstract Syntax Trees

Abstract syntax trees, or ASTs, ease the problems
of analyzing and optimizing code undergoing comg; The right argument to the verb, represented simi-
pilation by parsing free-form source code to create |arly to the left argument.

a tabular representation of the same program in a

form that is amenable to rapid analysis and modificdddex The list of expressions that index the array

tion. Figure 1 is the APL code for a simple program  argument, represented as a list of array names.
benchloop. The first four columns of Figure 5are  If the verb under execution is an indexed refer-

the abstract syntax tree created f@mchloop by ence or indexed assignment, the syntax of APL
the tokenizer/parser. permits an arbitrary number of arguments to the

verb. If the verb is not an indexing expression,
3.1 AST Structure this element is elided.

The data structure used to represent abstract syntaXhe annotator amends the AST with additional el-
trees is a six-column table of arrays. Each row efnents, which are described in Section 5.1.

the table represents the computation performed by a

single APL primitive verb, adverb, or conjunction3 2  AST Creation

The format and content of each row of the table is:
The AST is created by a tokenizer/parser similar to

Target The result of the computation of a singléhat used in a direct code-generating compiler. The
primitive. It is the name of a noun in the originatlifference is that, instead of emitting machine in-
program, or a temporary name generated by thieuctions, or code in a target language, the parser
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emits rows of the AST. Names of temporary resulpsoperties of thelosest preceding deftion of that
are kept on a parser stack and removed at an apprame in the AST. Thatis, i is the list of row num-
priate time later in the parsing of the APL sentencdaers within the AST where the name in question is
The tokenizer operates in parallel on the entidefined, and: is the index of a use of that name, the
source program at once, without any looping. Tidosest preceding deftionis I/ (d<u)/d. As will
parser iterates over each token generated by the t&-seen later on, this assumption can lead to difficul-
enizer. ties, so even APL requires proper data flow analysis.
The annotator uses the AST to infer properties
about the arrays created by the program being com-
piled, by examining each verb and adverb that can
anﬁg'fentially be executed during the lifetime of an APL

:)?cgz th%Ai;:aha;greehnolcgnsgxgtdegt’;ﬂ%?\?;neal Jprogram. For example, it can deduce that the result
ated using y P gy Y&t the index generator verb is always an integer list.

A_rra;_/ annota-tlons the static amendmgnt ofan AS his information may then be used later in the anno-
with information about the morphological propertle&

4  Array Annotation

ion process to determine the properties of a verb
of the arrays created by the verbs of a program. F P Prop

ticular interest to th mpiler writer are the t at takes the result of the index generator as an ar-
partictiar interestfo the comptie erare € yPeument. This is denoted dsrward morphological
rank, shape, and value of such arrays. Other pr alysis
erties are also of interest, but have less immediate
value. The annotator may also be able to deduce proper-
Data flow analysis and array notation are relategle,S of the arguments to a verb. For example, 1SO

but their main focus differs. Data flow analysis pe tandard APL rest_rlcts the _Ieft argu_ment of the in-
L - dexof verb to be a list. This information can be used
forms several duties, including:

to deduce properties of the arguments of the earlier
e Segmenting the source program inbmsic Verb that created the left argument. This is denoted

blocks Basic blocks are straight-line code wit@sbackward morphological analysis
no entry or exit except at the top or bottom of

a block. Local analysigs performed indepen- _

dently upon each basic blockGlobal analysis 4-1 Assumption of Correctness

is performed across all basic blocks.
P Array morphology assumes that the program under

e Tracing the lifetimes of variables, as defined K3nalysis is correct. Deductions about array proper-
their definitions and uses within and across bl€s are based on the known characteristics of prim-
sic blocks. In a traditional scalar compiler, thedBVes and arrays executing in an error-free manner.
def/use chaingre used for such purposes AAlthough the annotator can statically detect certain

register allocation and code hoisting. classes of error in programs, _other types of source
program errors will produce incorrect annotation,

Even though most APL programs are loop-freethich may cause incorrect results of other run-time
having few basic blocks, data flow analysis is stithilure at unexpected locations in the program. This
required for morphological analysis. The current ahas obvious implications for programs which depend
notator assumes that any named argument hasdhevent trapping for their execution.
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5 How to Annotate an Array Value The result value of each entry. This value
is usually only known for constants and entries

This section describes the array annotator and shows whose value is determined by constant propa-

its capabilities and limitations fagach class of prim- gation.

itive it handles.

Unknown entries are represented as empty lists.
5.1 Annotated AST Structure Figure 5 shows two abstract syntax trees for

An annotated AST includes amendments made bgnchloop after the array annotator has processed
morphological analysis. These amendments are rép-One represents the original program as shown in

resented in the AST as columns containing: Figure 1; the other reflects the program in Figure 4,
after the introduction of declarations. Since the axis

Class The class represented by the array createddid index columns are empty in this example, they
each row of the AST. Its primary use is in prophave been elided from the figure.
agation of constants, which is useful in partial
evaluation. The class is represented as a char-
acter constant, such as:' for constant,'v' 5.2 Annotation Methodology

for variabl . . L .
or variable, etc During array annotation, information about the argu-

Type The result type of each entry. This is most signents to each verb is analyzed on a verb-dependent
nificant from the standpoint of compiled codeqr derived-verb-dependent basis. Appropriate entries
because type is the major factor cotifr are made inthe AST as information about type, rank,
code generation. Type is maintained as onesifape, and value is deduced. Tentative entries are
the following character constants: never made — once an AST annotation entry is filled

in, it is never changed.

This lack of tentative behavior is required because

i Integer. Typically 32-bit or 64-bit integer.of the dependency of annotation on earlier annota-

f Float. Typically double precision IEEEtion decisions. If an early decision turns out to be

floating point. wrong, it may invalidate an arbitrary number of later
annotation decisions. Therefore, the annotator takes

. . . a conservative approach and only fills in entries when

¢ Character. Typically 8-bit, 16-bit, or 32+,06 is no doubt as to their content. As will be

bit bytes. shown later on, this isn’'t quite true, but it is quite
a Array. Typically 32-bit or 64-bit pointers. effective.

Rank The result rank of each entry. This is repre- This single-assignmerdpproach permits the en-

sented as a scalar between 0 and the maximblF AST to be processed in parallel, at least concep-
allowable rank array in the system tually. In the current annotator, each family of verbs

(e.g, all dyadic scalar verbs (plus, minus, times, di-

Shape The result shape of each entry. This is repide, maximum, nand, nor; all reductions, etc.) are
resented as an integer list of zero or more el@nalyzed in parallel. Iteration over the AST contin-
ments. ues until no further entries can be filled in.

b Boolean. One bit per element.

z Complex. Typically a pair of floats.



Except as noted below, the annotator does not g

rently propagate value information or perform parti
evaluation based on known values.

The remainder of this section describes how eg
family of related APL primitives are handled. Mos
of the relevant properties are shown in Figure 2. H
simplicity in presentation, some of the properti
shown in the figure are approximations.

Indexed Reference APL's anomalous syntax for in-
dexing permits the rank of the argument array
be deduced statically. For example, indexing
a list in APL is written asx[i] and indexing
of atable is written as[i;31].

The rank of the result is deducible if the index
ing arguments have known ranks. The res
rank is the sum of the ranks of all the indexin
arguments. In the case of elided indexing arg
ments, to select entire rows or columns, as

x[1i;] topick row(s)i from x, the rank of the

result increases by one for each elided index.

The shape of the result is the catenation of t
shapes of the indexing arguments, except wh
an indexing argument has been elided. In th
case, the element of the result shape that cof
sponds to the elided index is the correspondi
member of the shape of the array being indexe
Itis only when that shape is also known that th
result shape can be fully determined.

Indexed Assignmentindexed assignment car
change the type of the array being assign
into. Therefore, indexed assignment data flg
analysis and array morphology are conservat
in their treatment of type.

ur- Name Verb Result Result | Result
) type rank shape
AlConjugate + T w ppPw pw
Negation - T w PPw Pw
Signum X I ppw pw
Cieciprocal + F pPPw pw
t Power ofe * F PPw Pw
or Ceiling [ I PPw Pw
Floor L I ppPw pw
ESMagnitude | T w PPw pw
Logical not ~ B PPw Pw
Ttimes o F PPw Pw
Io(g]e ® F * *
Add + a MT * *
to Subtract - a MT w * *
Multiply X o MT * *
Of Divide + F * *
Power * a MT w * *
Logarithm ® F * *
Maximum [ o MT w * *
_ Minimum L o MT w * *
Residue | o MT w * *
It ess than < B * *
gNot greater < B * *
Equal = B * *
U- Not less > B * *
inNot equal # B * *
Or v B * *
And A B * *
Nor N B * *
Nand A B * *
he IndexR wli] T w * *
enlndexA wlil« | o MT w PPw Pw
Upgrade Aw I 1 14pPw
af)owngrade Jw I 1 11Pw
re- Shape Pw I 1 PPw
ngReshape | apw T w P,a , &
d Assign <« T w pPw pw
- Rotate adpw T w PPw pw
e Reversal dw T w PPw pw
Rotate aew T w ppw pw
Reversal ew T w ppw Pw
Transpose| Sw T w pPPw dPw
" Transpose| o&w T w * *
ed Take atw T w * a
W Drop avw T w * *
Set oew B ppa pa
e Indexof olw I PPw Pw
Integers 1w I 1 w
Catenate a,w o MT w * *
Replicate a/w T w 1M PPw *

Indexof Indexof verifies that its left argument is s
list or is of unknown rank, and establishes

ar —type

rank of 1 (list) for the left argument if its rank

was previously unknown.

1 * —too complicated for table

MT — maximum of types

Figure 2: Morphological properties of verbs




Index Generator If the argument value is known,5.3 Loops

the result shape is established. : . .
P The presence of loops in programs makes it possible

Catenate The result shape is more complicated, bthat the set of definitions entering a basic block may
is rough|y the shape of one argument exce(mnﬂlct. Such a conflict may merely mean that gen-
along the axis of catenation, where it is therated code quality will suffer. It may also mean that
sum of the shapes of both arrays along th#€ program has a bug in it. Consider the following
axis. Treatment of scalars and degenerate g@de fragment and the basic block starting with label

rays complicates matters considerably. 1p:

Reduce There are too many cases of reduction to k<5
enumerate here. Commonly used reductions 1p: k<k+1
have a Boolean (all, any) result or a result type >(k<1000)/1p

which is the same, ignoring blowup, as the argu-

ment (summation, maximum). The result rank Upon entry from the first line, the variableis an

is0l " 1+PPw. The result shape is the argumefyteger scalar. The value upon entry from the branch

shape with one element removed, depending Ribel, however, has unknown characteristics until the

the axis of reduction. entire basic block containing the branchip has

. . . been analyzed. But it cannot be analyzed until the

Inner Prqduct The inner product conjunctloq hascharacteri;/tics ok are known! How canythis Catch-
an immense number of cases, again t

% problem be dealt with?
many to present here. The result rank IS .
Several methods come to mind:

0f "2+ (ppa)+ppw. The result shape is the

catenation of the two argument shapes, with t@r
trailing element of the left argument shape and
the leading element of the right argument shape
elided. Type analysis is fairly complicated, be-

ing based on both verb arguments to the con-
junction as well as both array arguments to the
derived verb. Nonetheless, it can be done, and

the resulting code to support it is surprisinglyjerge Combine the morphological information
short. from different paths, taking the minimum of
their intersection. In the above example, this
would never resolve the type information lof
because the “don’t know yet” fields would take
precedence over the known ones.

eedy Take the reaching defiion from the previ-
ous basic block at face value and analyze. When
the analysis is complete, compare the values en-
tering each block. If they differ, declare an error
in the program. In the example above, this ap-
proach would, by happenstance, work perfectly.

Outer Product Outer product is handled similarly
to dyadic scalar verbs, except that outer prod-
uct pairs each element of one argument with the
entire other argument. Thus, the result type is
identical to that of dyadic scalar verbs. The refentative Assume the basic block inputs are known,
sult rank is the sum of the argument ranks, and  jn the same manner as the greedy method. See
the result shape is the catenation of the argu- if things work out at the end. If not, back off to
ment shapes. more conservative information and try again.



Traceback Keep information which allows eacharge differences among primitive families in terms
morphological deduction to be traced to itsf their impact on annotation. Rather, their physical
source. If the sources agree at their confluengasition in the source program may be a more criti-
things are fine. If not, then the program is moreal factor in measuring the impact of a missing array
complex than we expect. For example, a funproperty.
tion is may be called at times with matrix argu- In order to evaluate the relative impact of anno-
ments, and at other times with list argumentgators for different families of primitives, annotation
The YAT approach of generating separate codeas performed ons, Mike Jenkins’ model of the
for each instance of such programs makes sensg.\360 domino function [Jen70], with each fam-

here. ily disabled independently.
The results of this are shown in Figure 3. Not
5.4 Oh, what a tangled web we weave! surprisingly, failure to propagate assignment infor-

mation caused severe problems. Scalar verbs and
Strong threads connect executing APL primitives,—eshape took a heavy toll, likely due to their popu-
array properties resulting from one primitive may digrity. Indexed reference and, to a lesser degree, in-
rectly or indirectly affect the properties of many othgexed assign caused trouble as well. Indexing gives
ers. Inability to deduce a property for one primitive'strong hints as to rank, which suggests that more reg-
result may have a domino effect, making it impossijar languages, such as J, may have more problems
ble to deduce a large number of properties of arraygh array morphology than APL does. See Section
that are dependent upon the first one. Just as pullii®for more information on this topic.
a single thread from a cloth may cause its destruc-\iore study of real world applications s called for,
tion, so the failure to deduce a single array propef¥cause it is clear that examination of a single pro-

may cause many further annotations to fail. gram is not an adequate measure of annotator sensi-
On the other hand, this same sensitivity suggesizty.

that an interactive compiler that is able to ask the user
for assistance in determining properties of specific
arrays may be of great utility. Such a compiler might
suggest: “If you declare the type afon line 23 of
functionfoo, | can increase the deduction score f@.5 How to Annotate an Array, Really
type and rank from 30% to 97%.”
Presentation of array connectivity can be made d@nual annotation of an array is a good way to un-
a spider web on a graphical user interface, and @gyrstand how general annotation works. It is a relax-
primitives and arrays colored in a way related to ti@ion algorithm much like solving a crossword puz-
presence or lack of morphological information rel€ or cross sums:
lated to each of them. However, as tempting as such
a presentation might be, it is of little use to the un- e Start with an AST for the program you want
sighted and color blind among us, so other presenta- to annotate. Catenate as many columns on the
tion facilities are required as well. AST as you have fields you want to annotate.
The connectivity of morphological array informa-  The figures in this paper, for example, annotate
tion among primitives suggests that there may not be type, rank, shape, and value.
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Disabled Number of deduced items
Handler Type | Rank | Shape| Value
Total possible 174| 176 174 174
All enabled,

no declarations 99| 152 15 15
All enabled,

w/declarations | 174| 176 22 15
Assignment 49 51 1 13
Monadic scalars 88| 143 15 15
Dyadic scalars 60 92 6 15
Indexed assign| 109 | 156 22 15
Indexed 89 71 8 15
reference

Grade 146 | 160 20 15
Rotate, reversall 172 | 163 20 15
Shape 113| 161 13 15
Reshape 95| 155 22 15
Transpose 170 167 15 15
Reduction 133 | 127 9 15
Take 113| 170 15 15
Drop 126 | 130 20 15
Inner product 157 | 165 15 15
Outer product 126 | 130 20 15
Set membership 174| 176 22 15
Indexof 162| 160 16 15
Index generator] 163 | 163 21 14
Catenate 101| 143 10 15
Replicate 171 173 22 15

Figure 3: Effect on annotation dfs of selectively

disabling annotation handlers.

¢ Delete, modify, or add family handler functions
as required, to perform the specific annotation
you desire.

e Use information from entries you have already
filled in to deduce properties of missing entries.
Fill in those entries. It does not matter if you
miss an entry on one pass through all family
handlers, as long as you get it on a later pass.
It is important, however, to do some work on
every pass, filling in at least one annotation en-

try.

¢ Keep going until the table stops changing.

Doing non-zero work on each iteration guarantees
completeness, because the table entries must even-
tually fill. It also allows a certain amount of sloppi-
ness to exist harmlessly in the annotation algorithms.
Such behavior is characteristic of certain simple al-
gorithms and of unsynchronized parallel computa-
tion. The number of iterations required to fully an-
notate an AST with the current algorithm is no worse
than linear in the number of AST entries. This sug-
gests that annotation performance is better if multi-
ple entries are filled in on each pass.

6 The Impact of Declarations

Declarations can be of great value in array morphol-
ogy. Even though this is saying that it is easy to get
good exam scores if someone tells you the answers,
it turns out that a few hints go a long way. As shown
in the top of Figure 3, annotation ak without dec-
larations is able to deduce the type of only about half
of the arrays created by the program. However, if
the annotator is told that the arguments are floating
tables, then the annotator score for type and rank de-
duction jumps to 100%, showing that morphological
analysis of programs can benefit substantially from



r<benchloopb n ing development. The ensemble approach, taken by
A Enable optimization. Budd [Bud88], Ching [Chi86, CNS89], and Driscoll
n<(10)PLn a Maken an integer scalar,. [GCDO086, GCDO87]. accepts an entire APL appli-
n<2500xn cation as the compilation unit.

L: The single compilation approach offers speed
+(0<n<n-1)PL and convenience, whereas the ensemble approach
r<il has the virtue of allowing interprocedural analysis

to distribute morphological information about user-

defined function parameters among the functions be-

ing compiled. This reduces the need for explicit dec-

a few declarations. This confirms Budd’s findindarations within the compilation unit.

regarding interprocedural analysis. [Bud85] The unique advantages of both approaches sug-
As a simple example of declarations in actiogests combining them in a development platform

consider the two versions of functiGsenchloop environment capable of preserving interprocedural

in Figures 1 and 4, and its two annotations in Figaorphological information. This would provide the

ure 5. benefit of global morphological analysis, as well as
The annotation ofbenchloop without decla- permitting the compilation of single functions.

rations was unable to deduce information because

it had no starting point. Adding the sentence .

n<(10)PLn has the effect of making an integer /  ldentities

scalar after its execution. This gave the annotator

a starting point, thereby allowing deduction of typ@ell-written APL interpreters make substantial use

and rank for the remainder of the items. of identities, simply lecause the cost of doing so is
Wai-Mee Ching's APL compiler [Chi86, CNSgg]usuaIIy low and the potential gains are large. For ex-

requires the user to declare the arguments to the miiippPle, catenation of an empty listto another listneed

function being compiled. YAT also permits declard0t make a copy of the non-empty list as a result.

tions [GCDO86, GCDO87]. Even though declard=atenate merely recognizes the identity and passes

tions go against the grain of traditional APL desigi}e nhon-empty list as the result. Multiplication of an

their utility in obtaining good performance shoul@Tay by the scalat can skip all mathematical cal-
now be obvious. culations for the cost of one comparison.

Although it is possible to detect certain of these
identities at compile time, it is not likely that many
of them will be detected in practice, simply because
APL compiler writers have taken two approaches people do not tend to write programs that way. Run-
specification of the unit of code to be compiled. THéme detection is probably still the mainstay of iden-
separate compilation approach, used by Wiedmaiitres in APL.

[Wie83] and in ACORN [BBJM90, Ber90], permits Partial properties, discussed in Section 14, offer
compilation of single functions, such as those thétte opportunity to reduce the cost of run-time iden-
are performance bottlenecks. It also permits cotity detection and increase general system perform-
venient recompilation of small pieces of code duance. In the case where a run-time check might de-

Figure 4: Benchloop with declarations

6.1 The Compilation Unit
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tect an identity, it is possible that the check can beThe question remains of how a production quality

eliminated totally, or made simpler, because of infaannotator can perform efficiently without having all

mation available from array annotation. In the casamily handlers know about the needs of each of the

where a run-time identity clearly cannot occur, a ruother handlers. One solution is to keefrigger bit

time check for it can be eliminated. list marking each changed row, let the family han-
dlers be dispatched based on need, and use the trig-
gers to locate starting points for further annotation,

8 Static Detection of Errors thereby reducing the workload.

Another potential benefit of array morphology is )

static detection of programming errors. For examplé0 ~ Assertions

if an array is known to be rank, and it is indexed

with a rank2 indexing expression, then the prografeclarationsare non-executable directives to a com-

is faulty. Similarly, a character array as an argumeiler, asserting truths about the program and its data.

to logarithm is a bug in the source program. Although they work well for what they do, they
Annotators can make static conformability checiéé€ inadequate for more general assertions about a

between verb arguments. For example, rotate can gpmputation.Assertionsare executable tests placed

sure that its left argument, if known, is integer-valugtithin an application to perform specific tests upon

and of appropriate rank for conformability with th&ata, yet which have no effect upon the outcome of

right argument. This technique has merit becaude application. When an assertion fails, however,

any such check that can be performed at COmpiiqesignals an event, to allow corrective action to be

time need not have run-time code generated for it taken, or notifies the user or application writer of a

Other errors can be statically detected usiRgePIem- n o
knowledge of array properties. The potential bene-ASSertions are often used within applications to
fits of such error detection are substantial and mepfievent or limit damage to databases by verifying

more study for both compilers and interpreters. ~ Certain properties of arguments before they are able
to affect the database incorrectly. For example, a text

database maintenance function might assert that its

9 Performance and Triggers argument is textual, rather than numeric, data. A bi-
nary search with an argument that is defined as being

Each iteration through the family handlers examing8fted might issue an assertion that the argument is
all entries, even though there may not be anything'fgléed sorted.

gain by examining the majority of them. Annotation Assertions are also used to improve the locality of
of 1s takes 21 iterations to stabilize, so poor pef@ultisolation. A large application may make asser-
formance is highly visible. The treatment of all erflons about its input, or about intermediate results, in
tries on each iteration was done for simplicity, sincder to halt execution immediately if the assertion
annotator performance is not a pressing issue fof@4ls- The other choice, of allowing execution to pro-

research tool. ceed, muddies the tracks of the original problem and
makes fault determination more difficult.
10y, itis an ad hoc assertion’s way of failing. Assertions and declarations have much in com-
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mon. Assertions may be viewed as nothing mocempile time, rather than being deferred until exe-
than executable declarations within a program. @uition. For example, in the above-mentioned exam-
program may assert that its argument is a talgke of a binary search, it may be that the compiler is
of floating point numbers by a sentence such able to statically determine that the argument which
assert (2=ppPx)A'f'=type x. Thisistanta- is supposed to be in sorted order arose from an ex-
mount to a declaration in a compiled environment.pression which guarantees its ordering. The code

This suggests combining declarations and asgerimake this validation at execution could then be
tions into a single mechanism, denoted merelgss elided. Contrariwise, if the argument was known to
sertions The benefits of combining declarations antbt be sorted, an exception could be raised at either
assertions into a single mechanism include: compile or execution time.

e . : Since assertion conjunctions are the same as any
e unification of two previously disparate con- h . ) i the | h
cepts, simplifying the job of teaching and Iearnqt er conjunctions in the language, they can be
. ! added to existing dialects of APL and J with no
ing a language,

changes in language syntax or semantics.

e providing a mechanism in which the work done
by declarations can be done by assertions at

either execution time or during the process Qfy o  Assertions and Compiled APL
compilation,

e provision of a formal mechanism for providinissertlonslneed not_ generate cpde to _be ?ﬁ?;t'vef'
declarations within APL, and or example, assertions appearing as simple identi-

ties can have a substantial impact on potential code
e specifying a formal mechanism for providingluality.
assertions within APL, as opposed to the ad hocConsider the insertion of the following two state-
mechanisms now used by application writérs.ments into the. s function:

a<«al;]1+1.0
10.1 The Domain Conjunction bebl;1+1.0

Discussions with Ken Iverson about assertions led toThese are equivalent, in a morphological sense, to
the concept of domain conjunctioydenoted here asthe floating table assertion made in Section 10. An-
when. Consider two verbsork andvalid. The notation will detect the index as an identity, produc-
conjunctive expressioR work when valid y ingthe entire array as its result, with the benefit of
returnsx work v if the result ofx valid yis implying that the array is of rank. The divide by
1. Otherwise, it signals an event. 1.0 is also detected as an identity, but has the effect
In compiled code, some of the work done b§f coercing the array type to floating.
the domain conjunction could potentially be done at In terms of array morphology, the effect of these
2c " . y _ - statemen_ts is s_lgnlflcant. As noted in Section 6,_ the
urrently, programmers witie assertions using such dVeize ot of inserting declarations for the two function
mechanisms as intentional divide by zero, branch to fractional . .
line numbers, intentional syntax error, or vendor-dependédf@uments dramatically increases the amount of mor-
event signalling capabilities. phological information obtainable.

12



11 Constant Propagation APL — as in Fortran — in subscript computations. Al-
though common subexpressions may not occur as
Constant propagation has not been taken very famiften in APL as in Fortran, their elimination may
this project, partly because there was not much dpave even more value in APL than in other languages
portunity for it to occur in the small suite of programs APL's common subexpressions tend to be array-
used as test cases for the annotator. It will be intealued, rather than scalar-valued, so the potential for
esting to perform array morphology on a larger cgberformance and storage gains is substantial.
lection of real world applications and see if this lack Constant propagation and partial evaluation can be
of opportunity is typical of APL programs in generakaken considerably further than they have been here.
or if the test suite used thus far is anomalous. The calculus of j-vectors and addressing polynomials
offer a large potential performance benefit.
Type-dependent optimizations are not presently
12 Array Morphology and J supported. These optimizations include detected
identities — the floor of a Boolean array need not
J is a generalization and rationalization of the ideggnerate code — and strength reduction: multiply on
of APL [HIMW9O0, Ive96]. Many of the rough edgesBoolean arguments can produce a Boolean result us-
and anomalies of APL are gone from J, and it pahg logical and.
mits creation of purely functional programs. One of Another important area that remains totally un-
the anomalies that is gone is bracket indexing, whigQplored is the morphology of recursive data struc-
means that array annotation based on examinationgtes, particularly in relation to adverbs and conjunc-
indexing expressions can no longer make deductiqigshs. Support for such structures, known as boxed
of rank. J also removes most other rank restrictioggnested arrays, is an area where the performance of
on primitives. For example, indexof in J permits theurrent APL interpreters is generally deficient, hav-
left argument to be of any rank, rather than limiting,g Jittle support for any but the simplest of special
it to rank1 as APL does. cases.
Do these generalizations and rationalizations, as
desirable as they may be from the standpoint of lan-
guage design, teaching, and convenience, preskdt Partial Properties
roadblocks to the annotation of J programs for com-
pilation? Not if one accepts the need for assertio@se of the by-products of array morphology is par-
or declarations. In fact, many of J's features, suchtz information about the properties of arrays. Al-
static scoping, gerunds, and control structures, adiieugh this area remains unexplored, it is potentially
ally enhance compilability. rich. The following are typical of the sorts of infor-
mation that array annotation can provide:

13 Roads Not Taken e Indexing may determine some, but not all, of
the elements of a shape vector.

No effort was made to examine the possibility of

common subexpression elimination (CSE) [ASU86]. ¢ A verb may deduce that one of its arguments is

Common subexpressions appear most frequently in numeric, but of unknown type.
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e The index generator may determine that its aferonto’s Department of Electrical and Computer
gument is a singleton, but cannot determine i1gineering. Professor Corinna Lee persuaded me
rank. to preserve the definition of basic blocks as they exist

in other languages. Elena Anzalone provided valu-

* An array may be known to be sorted in Somgyjq editorial services. Reviewer C09's comments
order, a fact that could be exploited by Sea“#ﬁproved the presentation.

primitives.

e An array may be known to be a permutation of
a dense set of integers.

e An array may be known to be a set of valid in-
dices for another array.

Many other properties can be partially deduced.
This is another unexplored area which merits addi-
tional research.

15 Summary

Array morphology is a powerful tool for the static
determination of array properties in applicative lan-
guages including, but not limited to, type, rank,
shape, and value. This information is invaluable in
the creation of efficient compiled APL code.

When array morphology is inadequate, introduc-
tion of assertions or array declarations specifying
critical array properties can be of great utility. The
utility of array assertions suggests that a larger com-
pilation unit increases the potential performance of
compiled code, with no additional user-supplied in-
formation. Existing dialects of APL and J can sup-
port assertions as a domain conjunction, with no
changes to the syntax or semantics of the languages.
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n
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T_2 7| e 6 [ 0 i 0
r < 8 [ 0 [ 0
T 4 1] x 5 i 0
n < 10 i 0
1:
T 7 11 2 i 0
n < 13 i 0
T_9 0| < 14| b b 0
T 10 | 15| P 3 i 0 i 0
T_11 - | 16
r < 2 [ 0 1 [ 0 1
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