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Abstract 1 Introduction

Although multicomputers are becoming feasible fg,rlngle processor computers based on electrical tech-

nology are reaching their performance limits, due to

solving large problems, they are difficult to program: - : )
glargep . y brog n?actors such as fundamental limits of optical lithog-
Extraction of parallelism from scalar languages IS

possible, but limited. Parallelism in algorithm der_aphy and the speed of light. Itis easy to envision

sign is difficult for those who think in von Neuman?smcon'bélsecj computers which are a hundred times

. . faster than today’s processors, but speed improve-
terms. Portability of programs and programmlni%ent factors of tfi/ougands are unIikerp P

skills can only be achieved by hiding th derly-
y y hiaing te uncery Therefore, in order to achieve performance im-

ing machine architecture from the user, yet this ma

impact performance on a specific host p¥ovements, computer architects are desigmuogi-

o computers— arrays of processors able to work

APL, J, and other applicative array languages Wit ncyrrently on problems.  Multi-computers are
adequately rich semantics can do much to solve thesgy 1o program. In a computing world which
problems.  The paper discusses the value of 80-p,y and large, stilaccustomed to the von Neu-
straction and semantic richness, performance issyggnn single-processor computing paradigm, multi-
portability, potential degree of parallelism, data di%‘omputers present several problems:
tribution, process creation, communication and syn-
chronization, frequency of program faults, and clar- | Most programming languages were designed

ity of expression. The BLAS are used as a basis from a von Neumann outlook, and inherently
for comparison with traditional supercomputing lan- ’

possess no more capability for parallel expres-
guages.

sion than does a cash register. Extracting paral-
lelism from programs written in such languages

*This paperoriginally appearedin the ACM SIGAPL ApL93 IS difficult, since when any parallelism inherent
Conference Proceedings. [Ber93b] in the algorithm is discarded by the limited ex-




pressiveness of the language used to descriggues, portability, potential degree of parallelism,
the algorithm. Wall’s study of instruction-levedata distribution, process creation, communication
parallelism [Wal91] obtained a median level ocdnd synchronization, frequency of program faults,
parallelism of 5, even assuming very ambitiousnd clarity of expression. The BLAS [LHKK79] are
hardware and software techniques were availsed as a basis for comparison with traditional super-
able. computing languages.

Algorithm design has, by and large, been done
from the von Neumann viewpoint, inndin92

people to the potential for parallel solutions to

problems. In the past 25 years, only user of
APL and a few other languages have taken par-
allel algorithm design seriously.

A Brief Overview of APL and J

Applied mathematics is concerned
with the design and analysis of algorithms
or programs The systematic treatment
of complex algorithms requires a suitable

Matching algorithms to machine architectures
is difficult; making portable algorithms which
run well on a variety of network topologies is
even harder. Most adaptations of scalar lan-
guages to parallel expression have been done
from the standpoint of a particular machine
design, andrequire that the application pro-
grammer explicitly embed those architectural
assumptions in the application program. Those
language designers have abdicated their respon-
sibility to provide programming tools that can
be effectively used by the masses. They have
merely passed the problems of synchronization,

programming languagéor their descrip-
tion, and such a programming language
should be concise, precise, consistent over
a wide area of application, mnemonic, and
economical of symbols; it should exhibit
clearly the constraints on the sequence in
which operations are performed; and it
should permit the description of a process
to be independent of the particular repre-
sentation chosen for the data.

Existing languages prove unsuitable
for a variety of reasons. [Ilve62]

communication, and data distribution on to the Ken Iverson originally created APL as a notation

users, who must embed such architectural cdnt teaching mathematics, and it was only later that
siderations in their programs. Such embeddittige idea of implementing APL as a language on a
inhibits program portability and thereby limitscomputer was seriously considered. That the design
the utility of programs written in such dialects took place independent of any particular computer

system is perhaps one reason why APL differs so
Given these and other such problems, what cgfeatly from traditional languages.

we, as language designers and compiler writers, dorhe primary characteristics of APL which set it

to alleviate or eliminate them?

apart from other languages are:

The thesis of this paper is that applicative array _ _
languages with adequate richness, such as APL an® Array orientation
_J, can d_o much to solvg th_ese prgblem§. The follow-, Adverbs and conjunctions
ing sections will deal with issues including the value
of semantic richness and abstraction, performances Consistent syntax and semantics
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APL is an array-oriented language — all primitivesistent way of describing many commonly required
are defined by their actions on entire collections @ifnctions. Two of the most powerful adverbs in APL
data. This orientation provides inherent parallelisrare inner product and rank. Inner product generalizes
its importance was only recently recognized by thiee matrix product of linear algebra to arrays of any
designers of other languages [Cam89]. Scalar furimension, and to any verbs, not just plus and times
tions, which work on each element of their argyBer91a, Ber91b]. For example, they have utility in
ments independently, are a simple example of thssociative searching and computation of transitive
power of APL. Consider the task of multiplying twalosure (TC):
tables of numbersc andy, and adding a constar,

to them. This can be written in APL asrxxy and | Inner product form) APL form | J form
in J asz+x*y . For example, Matrix product | x+.xy | X +/*y
Associative search xA .=y X *l=y
3+4 5 6x2 1 0 TC step XV. Ay X +1xy
11 8 3

The reverseverb (. ) reverses the order of the

Note that the argument shapes are inherenidading axis of its argument:
known. There is no need for the programmer to .
maintain information about array propertiesindepen-tlDI = 1.234
dent of the array itself. Each array contains informa- NB- 2 planes,3 rows,4 cols
tion as to its type, rank, shape, and value, which ist®l NB. value of tbl
automatically propagated from function to function.0 1 2 3

APL and J are functional, in that arguments tdt 6 7
verbs (functions) are entire arrays, called by valueg 91011
and results are arrays. Side effects are rarely used or
needed in APL. 12 13 14 15

APL includes the concept of adverbs and conjunl:fi 1718 19
tions (operators) that modify the behavior of verbgc,) 21 22 23
just as they do in natural language. For example, thd- 0! NB. Reverse the planes.
insertor reduceadverb, denoted, insertsits left ar- 1213 14 15
gument among the subarrays of its right argumeﬁ@. 1718 19

For example, 20 21 22 23
+/1 2 3 4 a Sum 01 2 3
10 4 5 6 7
x/1 2 3 4 a Product 8 91011
2u
/1 2 3 4 a Maximum Therank adverb () [Ber87] specifies the dimen-
n sions of the arguments to which a specific verb is to

be applied, and thereby greatly enhances the power
Adverbs are perhaps APL's most important contréf the verb. In this example of rank in conjunction
bution to computing. They provide a powerful, corwith reverse it permits reversal of rows or columns
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as well as planes: characters, rather than ints, longs, reals, double pre-

NB. Reverse each plane cisions, and so on. Relational expressions produce

"2 thl Boolean results; adding to a Boolean produces an in-
8 910 11 teger; dividing integers by an appropriate number re-
4 5 6 7 sults in reals, and taking the square root of negative
01 2 3 numbers results in complex numbers. Allthisis done
without the user’s knowledge or permission, for bet-
20 21 22 23 ter or worse. The problems with such an approach
16 17 18 19 are well-known to the numerical analyst, who may
12 13 14 15 prefer to have things screech to a halt when they are
NB. Reverse each row not firmly in control, or to be able to trap the event
"1 thl and take appropriate action.
3210 However, there are advantages to expressing num-
7 6 5 4 bers as numbers, and letting the machine handle
1110 9 8 whatever conversions are required. Among those ad-
vantages are architectural independence and reduced
15 14 13 12 code volume, allowing the programmer to concen-
19 18 17 16 trate on the problem at hand, rather than being con-
23 22 21 20 cerned about how the computer is going to store

numberst

Later examples will clarify rank can introduce par- By not requiring the user to specify the type of
allelismin the form of SPMD (Single Program, Muleach array involved in a computation, the system is
tiple Data) capabilities, and as a general way to ofpee to choose a representation which is most ap-
tain greater expressive power from even simple vefii®priate for the particular computer system and the
such as addition. verb currently being executed. For example, mov-

The above overview is necessarily brief and img from 32-bit integer to 64-bit integer machines
complete. For a more complete view of the varioiss transparent to an APL application. Moving from
dialects of APL and their capabilities, refer to texts/370 floating point format to IEEE format is also

on J [Ive96, lve91] and APL [IBM94, BB93]. transparent for most applications, although numeri-
cal analysts and those who have stored character ar-
3 The Benefits of Abstraction rays as numbers for some peculiar reason are obvi-

ously going to be affected.

APL is more abstract than other computer languages,
in terms of data storage methodology and the furiz2 Abstraction of Relationals

tional capabilities provided to its users. . : . .
P P The abstraction of treating relationals as verbs which

_ . return results, rather than embedding them in control
3.1 Numerical Abstraction

. . 1There are ways to deduce data types, and otherwise ensure
APL differs from many other computer languages fat they remain as you desire, but the need for them is the ex-
that it deals with data in the abstract — numbers atgbtion rather than the rule.
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structures, increases their power and makes it possi-
ble to treat most control flow problems as data flow
problems. For example, addirfigto the numbers
with a3 residue oR in the arrayeo can be written in

a loop-free and IF-free manner as:

eo+5*2=3Jeo

This transformation from control structure depen-
dence to data flow dependence is based on properties
of arithmetic identities. Nonetheless, such transfor-
mations work well in a large number of cases, ande
J's gerunds handle the remainder.

Elimination of control structure dependencies is
critical to performance because control structure de-
pendencies often stall pipelines, whereas data depen-
dencies need not. Although techniques are avail-
able for removing such dependencies from tradi-
tional programs [AKPW83], programs written using
control flow techniques are often harder to read, un-
derstand, and maintain than the same program writ-
ten without them. Compare and contrast the above
expression oreo with the corresponding Fortran
code using loops and an IF statement, or even with
the Fortran 90 WHERE/ELSEWHERE construct.

3.3 Abstraction of Verbs

APL provides a large set of general array primitives,
which are considerably more substantial than those
provided by other languages. Data structure verbs
include such facilities as tranposing, rotating, and re-
versing arrays of arbitrary type. Search primitives
include grading, set membership, generalized array
matching, and locate.

Making these verbs available as primitives has
several beneficial effects on large scale computation:

write many lines of code to perform common
functions such as searching for a part number.
The primitive is there, ready for instant use.

Improved code reliability — the primitives are
written by professionals and are used daily in a
myriad applications. There is no need to debug
yet another hand-coded sort routine, or to dis-
cover that a system is running slowly because it
uses a bubble sort.

Portability and performance — an algorithm
which is optimal for one machine architecture
may perform dismally on another. For ex-
ample, binary search may be wonderful on a
Cray X-MP, but a Connection Machine can per-
form searching in unit time, and a binary search
slows it down considerably. Abstraction of the
required capability — set membership or sorting,
for instance — leaves the system implementor
free to write the best possible code for a spe-
cific platform, and the application programmer
can rest assured that, in all but the most arcane
cases, the system will do a better job than he or
she can.

Moreover, when an application is ported to an-
other architecture, the user effort required to ob-
tain that ultimate performance on the new ar-
chitecture is zero. This is not the case with
low level algorithms, which are highly depen-
dent upon the peculiarities of today’s architec-
ture and today’s technology. Todays’s hot code
may be tomorrow’s dog — unrolled loops, which
run quite well on most vector machines, may
run slower on SIMD machines than does the
original code ?

e Productivity — by making frequently requirecgi

2Flynn’s taxonomy of computer architectures inclug4SD
ngle Instruction, Single Dat&IMD: Single Instruction, Mul-

facilities available as primitives, APL frees thep|e pata;MIMD: Multiple Instruction, Multiple Data. A re-
programmer from the drudgery of having teted acronymSPMD Single Program, Multiple Data, means
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e New algorithms — advances in algorithm design
have immediate payoffs at no cost to the ap-
plication writer. In interpreted APL, for exam-
ple, the orders of magnitude performance im-
provement which occur when someone installs®
a highly optimized inner product algorithm are
immediately available to all users. In a com-
piled environment, merely recompiling the sys-
tem will have the same effect. It is as if some-
one looked at all your programs, found all oc-
currences of inner product, and rewrote them
for you.

In a system with limited abstraction, where the
user is forced to write at a low level, adoption
of new algorithms, such as the Boyer-Moore
string search, are available only by having each
user take the time to redesign, recode, and retest
each and every instance of such searches.

Reduced code volume — just as mathematicians
use a concise notation to describe their ideas in
a uniform, easily read and verifiable manner, so
does a concise notation benefit programmers.
This has a large cost impact both in terms of
reading programs, which is critical when main-
taining or enhancing programs, and in the relia-
bility of such programs. Since program failure
rates are highly correlated with code volume,
the bigger a system is, the more things there
are that can cause it to fail. By reducing code
volumes by an order of magnitude, APL and J
improve code reliability and maintainability.

Programmer code production rates are fairly
fixed in terms of lines of code produced per day.
Since a line of APL code does an order of mag-
nitude more work than a line in another lan-

kerage house, where time is critical to profit,
use APL extensively.

Mediocre programmer$ can write good code
—those whose expertise lies in areas other than
computing, such as chemistry, medicine, or en-
gineering, are not likely to be interested in
spending a large portion of their time learning
the details of cache management, data distribu-
tion, code scheduling, or loop unrolling. They
rightly consider the computer as a tool for ob-
taining an answer to a problem in their disci-
pline, and often do not know if the method they
use is the most elegant or efficient one available.
As a result, it is common to see computer and
supercomputer applications using tens or hun-
dreds of times more resources than is, strictly
speaking, necessary. Thisis due in part to naiv-
ity and part to the users’ perception of how their
own time is best spent. Most often, that time
is spent in non-linear areas where a little bit of
computer knowledge would help a lot — sorting,
searching, and the like.

By making highly tuned versions of such com-
monly required functions available to the user
directly as primitives, APL helps users to write
more efficient code. A computational chemist
may not be able to write a binary search, but
with APL search primitives, there is no need to
do so. The straightforward and obvious solu-
tion using the primitive is also the optimal solu-
tion. Thus, mediocre programmers are able to
produce code which both meets their needs and
runs well.

guage, APL programmer productivity is much

greater. This is why organizations such as bro- This is not intended as an insult. It is simply a recognition

the running of the same program on Itiple processors.

of the fact that not everyone can be, has the time to be, or wants
to be, a computer wiz.



3.4 Data Structure Abstraction These problems can be dealt with most easily by

hiding the physical attributes of array storage from

Most programming languages expose the underlylﬂr% user, and by forbidding aliasing. Can this be done

data structure of arrays to the user. Some deem tW|§nout significantly affecting performance? Let us

a Good Thing, inasmuch as it lets the programmier
ind out.

use knowledge of that data structure to advantage.

For example, in Fortran, a user can EQUIVALENCE

two arrays, and deduce properties about array std-1 Alias Avoidance

age, including data type, adjacency of elements, "‘Wﬁjasing occurs when an array may be known by
so on. In C, the use giointerspermits rapid acCeSSmore than one name. This occurs in Fortran with
to array elements. _ EQUIVALENCE, and in C with pointers. APL has
However, exposure of data structures is a t_Wﬂ(') cognate to EQUIVALENCE. In a functional lan-
edged sword. Ther_e are a number o_f Bad Thmgﬁage, such constructs are undesirable — they make
gbout exposure, which are neatly_ §v0|ded by tre%mprehension of a program difficult as well as mak-
ing data structures as abstract entities: ing it hard to extend, maintain, and optimize pro-

e Aliasing—ifan array can be referred to in differdrams which use such constructs.
ent ways, then compilation of efficient vector- Equivalencing as a storage management method
ized or parallelized code to operate on that arréy @ harder call. Few languages have good sup-
can be difficult or impossible, because of the ifRort for non-rectangular data structures, except as
ability of the compiler to ascertain the absen@pplication-controlled vectors of storage, or as recur-
of data dependencies among array elements Sive data structures, with their attendant overhead.

In the case of languages which suppmsinters Some such equivalencing may grow out of Fortran’s
I tatic storage management. Lack of storage alloca-

the problem is exacerbated, because, excepf.in . .
P P ion tools, remedied but not automated in Fortran 90

the most recent dialects, there is no firm know]- : :
Cama89], is only part of the solution, because the de-

Il h f inter. T
edge at all about the contents of a pointer S|Sgners of Fortran 90 dropped that task back onto the

means that any pointer expression can poten= =~ ~ . )
) al any p P np application writer as well [Ber91b, Ber91al].
tially conflict with a reference to any variable.

APL, by contrast, has inherently automatic alloca-

e Array distribution — The order in which arraytion and deallocation for storage. Arrays are created
elements are accessed impacts the performamnden required and deleted when no longer required.
of applications. Fortran stores column elementhis eliminates many of the storage problems asso-
adjacently, which makes columnar access rapdaated with Fortran. It probably does not, however,
due to high cache hit ratios and storage integliminate all of them.
leaving. Access to adjacent row elements mayEquivalencing has impact on vectorization and
be considerably slower, due to cache missgmrallelization, in that data dependency analysis is
storage bank conflicts, and page faults. Infarther complicated by having what are really two or
multi-computer with distributed storagagcess more arrays being manipulated as if they were the
to an element may be affected by the netwogame array. The art of data dependency analysis has
distance to the processor which holds the auet yet reached the stage where all dependencies can
cessed element. be detected. In such cases, the compiler must take a



are not explicitly named. For example, a defini-
tion of the arithmetic mean, written as:

conservative view, and refuse to vectorize or paral-
lelize the offending code.

Functional programming is important in the avoid-
ance of aliasing. Aliasing can only occur if objects
are given names and synonyms. Function program-
ming uses a number of techniques to avoid these sit-
uations. Among them are:

(sum x) dividedby shape x

can be written explicitly in APL ag+/x)+pPx
and in J ag+/x)%#x .

J also provides a tacit form, in whicll argu-

e Functional programming itself — by avoiding
the use of side effects to alter global variables,
function programming simplifies the task of
data flow and data dependency analysis. This
eases the task of vectorization and paralleliza-
tion, since there are few or no dependencies
among computations.

Single assignment — this technique, used by lan-
guages such as SISAL [MS3A85], allows the
use of named variables, but permits them to
be assigned a value only once. Single assign-
ment languages simplify the task of paralleliza-
tion and vectorization considerably. Indeed,
SISAL is regularly beating Fortran on a number
of large numerical benchmarks [Can92], mostly
because of this simplicity. However, SISAL
and other such languages are perhaps not the
best tools for end users, as their computational
power is not complemented by a similar expres-
sive power. APL has the potential to offer both
expressive power and computational power, but
has yet to prove itself on the latter in the super-
computing arena.

Tacit definition — this notation, developed by
Hui, Iverson, and McDonnell [HIM91, MI89],

goes a step beyond functional programming. In
functional programming, the unnamed resul
of computations are themselves permitted as ar-

ments are elided. The placement of arguments
within an expression is determined solely by the
presence oforks and hooks Space does not
permit a full discussion of tacit programming,
but

A wide class of explicit definitions
can be expressed in tacit form using
the facilities of J [HIM91].

The basic idea behind the fork is that if three
verbs appear in isolation, they represefbr,
which is to be interpreted as follows: The fork
X (f g h) Y ,inwhichXandY are values and
f, g, andh are verbs, is:

XfY)gXhy)

Drawing the associated syntax tree for this ex-
pression immediately reveals why it is called a
fork. The tacit program for the arithmetic mean
can be written concisely in J using a fork as
(+ % #) .

Tacit definition removes the complication of
data flow and data dependency analysis from
the compilation process. Second, it offers a de-
gree of parallelism itself, in that even the simple
fork presented above allows the computations
usingf andh to proceed in parallel.

.155.4.2 Automatic Array Distribution

guments to other computations. In tacit definBtorage allocation and distribution of data among
tion, the arguments to the functions themselvpsocessors for high performance is a critical and
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largely unsolved problem in the design of multgument elements immediately close at hand.
computer systems. In any multi-computer system,A fundamental design principle violated by HPF
arrays must be accessible by those processors uginthhat of separation of the algorithm from its im-
their elements. plementation — An implementation on a specific ma-
In a shared storage system, access to non-lodaine architecture is tangled up with today’s engi-
storage is often tens or hundreds of times slower thagering constraints, the state of the art of machine
access to a processor’s local storage. In such a sy&sign, and so on. This produces a goulash, rather
tem, failure to allocate array elements at a processiman an algorithm, resulting in code which is non-
which accesses them frequently can negate the dertable to machines whose design we can not yet
sired performance gain of using a multi-computenvision.
Folk wisdom among multi-computer usersis ttite  APL hides the implementation from the user, and
data you want is always on the other processtow leaves the writer free to concentrate on the problem
can we ensure that data is where it should be, wharhand. Itis the responsibility of the compiler writer,
we want it to be there? Let us look at how it is don®ot the user, to ensure that the application achieves
today. peak performance on the target architecture. How
The Steele status report on High Performance Foan this be done?
tran [Ste93] (HPF) offers some good backgroundConsider the task of array allocation. To avoid
material on the issues dealt with in this paper. Two o&che interference, and maximize the benefits of in-
the directives discussed in the report are the ALIGHrleaved main store access, an array must be ac-
and DISTRIBUTE statements. These are intendeddessed stride-1 for maximum performance. Yet such
ensure that data can be associated with specific proeess is highly dependent upon the target machine’s
cessors, for maximum computational speed. Sinaehitecture and configuration. Is the user to em-
library routines are often written for maximum perbed host-specific code around every loop, to spread
formance with little concern for the caller’s data, thiarrays across storage in such a way as to achieve
will guarantee that each subroutine library routirthis performance level? Of course not. There is not
will require a different data distribution! enough time to do so, nor is it clear that the benefits
Such directives, opragmas as they are moreof doing so are worth the application programmer’s
commonly referred to, are valid within the scope dime to achieve it.
Fortran 90, but one is led to wonder whether the needSuppose that the compiler was to undertake this
for such pragmas is caused by Fortran’s semarttisk, and determine appropriate array storage meth-
poverty. A semantically richer language offers mows for each array. It might, for example, append
information to the compiler about what is going orextra columns to an array, so that particular refer-
and much of the value of the pragma is rendered renrce patterns would be optimal in an interleaved
gatory. or multi-computer environment. It might broad-
The assumption that subarrays should be assazist multiple copies of array segments to different
ated directly with processors is shortsighted, and mrocessors, based on knowledge of access patterns.
flects today’s architectural view of reality. NewefThis is difficult in a language which supports alias-
machines will have improved connectivity, and othéng and EQUIVALENCE, because those constructs
concerns, such as the destination of the resulting datake strong assumptions about inter-element dis-
elements, may be more important than having the tance and storage allocation techniques.
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In APL, on the other hand, all array accesses amany knife approach taken by Fortran 90, in which
abstract, and it is impossible for a user to discetime set of tools is limited by the imagination of the
the internal storage representation used for an language designer, rather than by the imagination of
ray. Therefore, there are no inhibitions to performirtge user. For example, there is no alternating sum
such storage management optimizations, and it caduction in Fortran 90, although such sums occur
all happen with no work by the application writerfrequently in physics and engineering.

This provides another benefit, in that programs writ- The value of richness of expression goes beyond
ten without machine dependencies are inherenty utility to the programmer. It makes life easier for
portable. interpreter and compiler writers, who can exploit a

Abstraction makes a language easier to teach single advance over a wide range of areas. As a real-
learn, and to use. If you are not concerned with thife example of this, consider the inner product con-
details of the underlying machine’s architecture, th@umction in APL.
you can concentrate on your problem and its solu-in APL, the inner produck .g denotes a matrix
tion. product in whichg is the function used to combine

argument array elements, afds the function used
) in the reduction into the result. The traditional ma-
4 Expression and the Programmer iy product of linear algebra is written as. x; one
_ _ step of a Boolean transitive closure on an adjacency
A semantically rich language is of immense valygatrix isv . A.

because knowledge in one area benefits another ., ina |ate 1970's, | was manager of the APL de-

learning ten verbs and twenty adverbs gives the Rfé'lopment department at I.P. Sharp Associates Lim-

tential for specifying 200 different actions. Slmll—ted_ A number of users of our system were con-

larly, a compu_ter language with cgnjunctions and atEjérned about the performance of ther inner prod-
verbs offers richness of expression to the prografs; large Boolean arrays in graph computations.

mer. For example, 1SO Standard APL permits any Plealized that a permuted loop order would permit

the dyadic verbs in Figure 1 to be used in CONJUNGactorization of the Boolean calculations, even on a

tion with thereduceor insertadverb, in a consistent, - . o machin David Allen implemented the

manner. Insert places the verb between the SUba”QPé%rithm and obtained a thousand-fold speedup fac-

of the right argument, then evaluates the resulting Xt on the problem. This madal Boolean matrix
pression. Thus, summatlo_n IS expres_sedas_alter- products immediately practical in APL, and our user
nating sum is-/, product isx/, maximum isl /, éand many others) went away very happy.

gnd S0 on. Mode_rn APL dialects permit any ver What made things even better was that the work
including user-defined verbs, to appear as the left ar

gument to insert. For example, x/ can be used to ad benefit for all inner products, not just the
. o . ) Boolean ones. The standafd x now ran 2.5-3
multiply a chain of matrices together.

: : . times faster than Fortran. The cost of inner products
The simple and consistent behavior of adverbs and. : .

. . . ) which required type conversion of the left argument
conjunctions in APL gives the programmer an ex-
C?!Ient set of lparts from which t_o construct the Sp.e- 4This algorithm was an outgrowth of an early non-Boolean
cific tool required to solve a particular problem. Thiggorithm used in CDC STAR-100 APL, probably due to Mike
erector set approach is in sharp contrast to the Swasigm.
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ran considerably faster, because those elements were Performance and the BLAS

only fetched once, rather than N times. All array ac-

cesses were now stride one, which improved cachige Basic Linear Algebra Subprograms (BLAS) are
hit ratios, and so on. So, rather than merely speedset of Fortran-callable subroutines which perform
ing up one library subroutine, we sped up a wholgperations which are commonly required in high-
family of hundreds of such routines (even those thaérformance computation. They are typically highly
had never been used yet!), with no more effort thamned to specific architectures in order to obtain max-
would have been required for one. imum performance on each host.

Similarly, supercomputer techniques, such asBLAS are categorized according to their compu-
block algorithms, for speeding up matrix product argational complexity. Some of the level-3 BLAS and
by and large, applicable to a much wider range @fe APL expressions which correspond to their defi-
problems than generally thought. Use of APL makestions are [DDHD9O]:
high-performance solutions to those problems imme-
diately accessible to all users. C+ aAB+BC | C<(axA+.xB)+pxC

As noted elsewhere, the algorithms underlying| € ¢ aATB+BC | C(ax(8A)+.xB)+BxC
such critical functions are invariably tuned to a spe- C+ aAB' +fC | C<(axA+.x8B)+BxC
cific host. The benefits of keeping the algorithms and|_C = 0ATB" +BC | C<(0ox(RA)+.x8B)+BxC
their tweaking out of the application should be obvi- . .
ous. Portability and performance suffer. Indeed, thA Other BLAS are harder to describe as simple

was one of the justifications for the creation of the L expressions, _because they involve operations
Basic Linear Algebra Subprograms (BLAS): on symmetric or triangular arrays. Such BLAS are
properly considered as applications, since they make

assumptions about characteristics of arrays which
...general agreement on standard names are not a part of most computer languages.

and parameter lists for some of these However, even with such limitations, techniques
basic operations ...would add the addi- such asarray morphology{Ber93a], offer the po-

tional benefit ofportability with efficiency tential for discovering and propagating such infor-
...[LHKK79] mation in APL. Array morphology is the study of

the array properties in array-based languages. Char-

Th ticle al ¢ N acteristics of arrays may be deduced from algebraic
€ same articie aiso presents a cogen argu“'l%l'enﬁtities and properties, such as that the sum of an

for us.e of APL, althoughit is aimed at promoting thSrray and its transpose is symmetric. The semantic
BLAS: level of APL is high enough that detection Bf 4+ B
is easy. APL interpreters often use pattern match-
It can serve as a conceptual aid ...to re- ing techniques to find such phrases in APL, often
gard an operation such as the dot product calledidioms and interpret them with code tuned to
as a basic building block. . . Itimproves the  handle such special cases efficiently. Perlis offers a
self-documenting quality of code to iden-  humber of insightful examples of what he calls mini-
tify an operation such as the dot product  gperations [Per79], many of which are detected by
by a unique mnemonic name. APL interpreters. His brief paper is well worth read-
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ing as an introduction to the power of the languagéderent architecture. This is akin to swapping the posi-
Assertionsare another way to specify array chations of the accelerator and brake when moving from
acteristics [Ber93a]. Asserting that an array is syra-4-cylinder automobile to a V-8. The redesigned in-
metric could allow a compiler to produce appropriateer product algorithms discussed earlier dynamically
code for its manipulation. For example, the tranpick an algorithm based on the relative sizes of the
pose of such an array would be treated as an identétsguments, their types, available storage, and sev-
and would generate no code. eral other parameters. Surely, such choices should
Even with such techniques, | doubt if raw APlbe made automatically and should not devolve to the
will be able to compete favorably with all ofuser.
the BLAS, which are traditionally hand-coded to
squeeze the last bit of performance from a system,
just as raw Fortran cannot compete favorably wi
the_ BLAS. Many of the BLAS appear to be appI'The most important aspect of APL and J as they re-
cations more than they are subprograms, and tf]gl[r

lexit be dealt with b h trivial e to large scale computation is the amount of par-
comp'exity canngt e dealt with by suc _tr|V|a X3l computation which is inherent in the notation.
pressions, even in APL. Of course, an idiom reco

. L Bbth APL and J possess considerable parallelism at
nizer could easily interface to the BLAS, but thatg number of semantic levels, including:

not the point.

APL can compete favorably with the BLAS when o Primitive verbs
we run into the Procrustean nature of the BLAS —
if your application does not fit the BLAS definition ® Adverbs
precisely, you are out of luck. For example, when ap-
plied to complex numbers +iy;, theSASUMunc-
tion computes X; | + | y; | instead of(x? 4 y?)/2.
Having a high-performance version of a function you _ _
can not use is of little value. By offering excellent, ® Defined functions
but perhaps not quite ultimate, performance on such, cejis and frames (J and certain APL dialects)
simple expressions, APL can meet the needs of the
majority of users who need something a bit out of thee Composition (J and certain APL dialects)
ordinary.

Finally, the BLAS leave the bulk of the effort in
porting to different architectures to the user. In adis- ¢ Gerunds
cussion of block updates, Day@nd Duff [DD90]
suggest the use of Parallelism can be exploited concurrently at all of
these levels. As will be shown in a later section,
synchronization and communication among parallel
processes is largely inherent, and the programmer
can avoid thinking about those problems. The fol-
What this means is that the user has to tinker with tleeving section briefly discusses the parallel proper-
application when porting it to a machine with a difties of APL and J. It expands on a recent article by

The Potential for Parallelism

e Expression

e Phrasal forms (J)

e Tacit definition (J)

...JIK-SDOT for short vector length ar-
chitectures ..and KJI-SAXPY for all
other cases.
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Willhoft [Wil91], which limits itself to APL2 and
does not discuss expressions or verb trains.

A detailed study of all of the capabilities of APL

and J is beyond the scope of this paper. The follow-

ing sections will merely offer a few examples from
each class where parallelism can be exploited.

Symbol Meaning
N APL | J Monadic Dyadic
6.1 Primitive verbs n + | Conjugate Add
APL possesses a rich set of primitive verbs (func-X * g;?itri at%;;‘;t
tions) which are inherently parallel in nature. They+ % | 1 Divided b Divid
, 0 y ivide
may be categorized by the shape of the arrays to A e W
\;v:écggr;iy naturally apply, as rank-0, rank-1, rank-2® A. | Baseelogy Base x log y
' L <. | Floor Minimum
r > | Ceiling Maximum
< < Less than
6.1.1 Scalar or rank-0 Verbs < < Less or
equal
Rank-0 verbs, the so-callextalar functionsobtain | = = Equal
their name from their characteristic of independeng > Greater or equal
operation on each scalar element of their argument > Greater than
array(s). Figure 1 shows the operations which are +, Logical or
in both APL and J as scalar verbs. Fortran 90 has ¥, Logical and
included some of these scalar verbs inrtgmeric | » +: Logical nor
functionsandmathematical functions ~ *: Logical nand
A scalar verb applies independently to each ele~ ~ | Logical not
ment of its argument. That is, there is no communi© 0. | Txy sin, cos, etc.
cation required among the elements. For example: ? ? | Roll Deal
| | Absolute value] Modulus

12 3<44 20
100

Figure 1: Scalar verbs in APL and J

Thus, all scalar verbs represent instances of fine-
grain parallelism, which means they are simple to

implement efficiently on vector or parallel machines

Expressions consisting of these verbs can exploit the
chainingcapabilities of vector architectures and data

distribution on SIMD or MIMD machines.
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6.1.2 Non-scalar verbs With the use of the rank adverb, these verbs can

N | b iaril qf lecti be simplified. For example, the expression:
on-scalar verbs are primarily used for selection, ., _..\4y¢(n, ph)eh

structuring, and searching operations. By deflnrlﬁay be written ag 0, —1npad )50 1 h.

tion, they are .demed on array structure_s Iar_ger tha hat is, use each scalar on the left (the integers
scalars, so it is natural to seek parallelism in them. . ;
1,2. . . n—1) astherotation amount for the fil-

Since space prohibits a full ana_ly5|s of them, on gr. Since there is only one filter, it is reused and the
two examples are presented. Willhoft offers a full%Sult is a table ofy rotated filters

dl?:;isézg t?;\fir:r;(?[vt/?)p;rt-relate d verhspgradeand Ina paively implemented environment, this_ use of

downarade Thev returmn a permutation vector forank will reduce processor and storage requirements

thoe ar?;ument wh)i/ch " usedeto index subarrays Wfﬁr t_he skewed filter by half. In a more sophisticated
' ' “"environment using dragalong [Abr70], the genera-

bring the argument array into increasing or decree%lso-n of the skewed filter could be avoided entirely.

ing sorted order, respectively. Since the literature ONr 1o potential for parallelism here is considerable.

parallel sorting [Lei92, Sto87] is extensive, it will no here is no interplay via side effects among the ar-

be discussed here, other than to note that the effgrt . .
rays, and the computation neatly decomposes into a

required to parallelize or vectorize a sort in APL i .
! P T o eparate computation for each result element.
trivial, because all the required information is imme-

diately at hand.
A simple example of the power of APL is exem6-2 Rank, Cells, and frames

plified by two versions of a convolution vefbdue 1o concept of function rank is fundamental to array
to George Moeckel of Mobil Research. The first usgs ra|elism in APL. Theank of a verb specifies the
the non-scalaotateverb () to skew the result of the,mper of axes in the arrays to which the verb natu-
outer product before reduction. The second uses FRNy applies. For example, additiort ) is defined
tate to generate skewed versions of the filter/wavelgf scalars adding to scalars, so is rank 0 0. Matrix in-
before performing an inner product with the trace: oo %.y) is defined on tables (matrices), so is rank
2. Rotate |.y ), or end-around shift, is defined on
a scalar left argument, which specifies the number of

r<wz conv tr;npad;h positions to be rotated, and a list or vector right ar-

h«wzo.xtr, (npad<«(Pwz)-1)P0 gument to be rotated, so rotate is rank 0 1. Since the

r<(Ptr)++#(0,-1npad)dh ravel verb makes its entire argument into a list, it is
classified as ranto.

r<wz convo tr;npad;h;n Operation of a rank-k verb upon arrays of higher

hetr, (npad<(n<Pwz)-1)pP0 rank than k is defined dadependenapplication of

re<(Ptr)twz+.x(0,-1npad)d(n,Ph)Ph th_e verb to each rank-k subarray of the argument,
with the final result being formed by laminating the
®Bob Smith, now of Qualitas,inc, designed a convolutigmdividual results. There is no specified temporal or-

conjunction for APL [Smi81], noting that its “applications .. .
include polynomial mliiplication, substring searching, anddermg’ so side effects can not be depended on. Data

weighted moving averages.” A well-implemented version Sfependencies simply do not exist.
such a conjunction would be a worthy addition to J and APL.  Consider a few examples of how this works in
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practice on an array whose shapebg) is2 3 5 4. cific algorithms. This is done with the rank adverb,
Matrix inverse applies independently to each of the be discussed shortly.
six (2 by 3) cells of shap® 4 to produce a result of

shape 3 4 5: 6.3 Adverbs and Conjunctions
$%.x As noted earlier, adverbs and conjunctions are a cen-
2345 tral factor in APL's power as an algorithmic nota-

_ _ tion. They allow one to concentrate on the problem
That is, each inverse produces a result of shage,,j without getting bogged down in detail. In a

4 5, and the six of them are laminated into the 2 IQ§'ense, they are macros which allow the user to fill in
3 frame. . the blanks for a specific computation. For example,
The determinant produces a rank-0 scalar for egghy, e jnner product, the user specifies the combining

result from a rank-2 argument, so their laminatiofyq reqycing verbs, while the control structure used
produces a result array which is of shape, be- remains unchanged

cause the scalars do not contribute to the result shape.
Fortran 90 has the same effect as APL on scalar 1
functions, but because Fortran 90's semantics are ﬁ&

generalized to the entire language, its applicabilify reduceor insert, the user specifies a verb to be
is limited. It also Complicates the semantics of thﬁserted among the Subarrays of the argument’ and
remainder of the language. then evaluated. This produces a wide range of useful
Extensioroccurs when one argument to a dyadfginctions, including the summation, product, maxi-
verb is of the same rank or less than the defined raflym, minimum, all, any, and count of Fortran 90, as
of the verb. That argument is extended by reusiag|l many that are not present in Fortran 90.
it as many times as needed. For example, the exThescanadverb, often called parallel prefixop-
pressior2 2 2+2 3 4 and the extended expressiogration, has immense power, particularly on numeric
2+2 3 4 both produce 5 6. and Boolean arguments. Scan is defined as produc-

Extension has even greater power when combingg the partial reductions on an argument. For exam-
with adverbs or conjunctions, as will be shown latgsle, the sum scan produces:

The concept of function rank has considerable

Insertion and Scan

value. ltis: thl
234 5
e a conceptual tool to guide our thinking about 1 1 1 1
algorithms, 9205 10
+\tbl

¢ adesign framework to assistin language design

decisions, and 2 59 14
1 2 3 4
e apowerful way to express SPMD parallelismin 9 11 115 215

a concise and uniform fashion. o
Boolean scans have such significant value that a

Although all verbs have a defined rank, it is oftenumber of articles have been written on them alone.
convenient to alter that rank to meet the needs of sper example, not-equal scan can be used to locate
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quoted strings in text (with the help of tkeverb to  Rank is applying addition teach rank-1 subarray

locate the quotes and generate the required Booleafoth arguments. Since there is only one left ar-
gument100 200 300) , itis extended and added to

6.3.2 The Recurrence Relation both rows of the right argument.

Recurrence relations are often trivially expressible 100 200+"(0 1) 2 330 1 23 4 5

in terms of scan. A recurrence relation is a relatidq0® 101 102

among the elements of a list or vector such that R 204 205

following holds: This picks rank-0 elements from the left argument,

seq[i] = add[ij+mpy[iJ*seq(i-1] and rank-1 subarrays from the right argument. In this
case, there are two cells in the left argument, and
Until recently, the recurrence relation was genemwo in the right, so no extension occurs at the rank
ally considered “non-vectorizable” by compiler writlevel. However, extension does occur at the level of
ers for vector machines. Back in 1971 or earlighe scalar verb, whet00 is added t® 1 2.
APLers had not been told this was impossible, soThe use of upgrade with rank has some interest-
they began writing the recurrence relationas:  ing applications. For example, consider the task of
determining which words in a table are anagrams
of one another, a problem posed by Jon Bentley

John Heckman created user-defined functions[%en%a’ Ben83b]. .Thls can b_e ane n J or APL In
perform a number of scans in APL, which did the jo ew characters, with no explicit iteration [Ber87].
. . : : : ' he key to an elegant solution is combining a sorting
in log, niterations. His algorithm was extremely fas

and worked on arrays as it does on lists, so many c\éef-rb’ upgrade, with rank, to grade each name inde-

: OIendently. In J, thisis done &4 . This resultsin
culations of mortgage payments, etc., could be mddée . . .
as many sort operations as there are words in the list,

at once. The potential for parallelism was obvious; : :
P ﬂ‘ld each of those sorts may be itself parallelized. To

The scan adverb entered APL as a primitive in 1973.", " : : .
be fair, the amount of parallelism obtainable in sort-
ing the characters in a single word is small, but the
6.3.3 The Rank Adverb point is that there is significant parallelism even in a

4-character expression.

tx+\add+t<x\mpy

The rank adverb"f) permits customization of a
primitive, derived, or defined verb to operate on ar-

rays of rankk. Consider the humble. Operatingin 6.4 Expressions

isolation, it can only add array to array or scalar to

array. But working in conjunction with rank, it carfor reasons of comprehension, maintenance, and
do much more. Here it is used to add a list to eaéHMplicity, APL programs are usually written as ap-

row of a matrix: plicative functions. It is, therefore, enlightening

to view them from that perspective in order to de-

100 200 300+"(1) 2 380 1 2345 termine what level of parallelism and other high-

100 201 302 performance computing benefits might exist within
103 204 305 them.
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The following discussion assumes, for simplicitgn large amount of computation, itself amenable to
that embedded assignment in mid-expression is atithe forms of parallelism presented here, there may
used. Although treatment of such assignments obly substantial benefit to seeking parallelism at the
slightly complicates the analysis, it is beyond thexpression level.

scope of this introduction to the topic. ~ Furthermore, if the expression is fully parenthe-
Consider that expressions are formed by combijzed to reveal its order of evaluation, even more par-

ingnouns{ 2 35 4j3 ), pronounsX, foo, dx ), allelism becomes evident:
verbs ¢,-*# ), and adverbs and conjunctioris (

\, ", . ) in syntactically and semantically mean- (((a+b)*d)%((|:foo e)-(f Q)
ingful ways. For example:
It is now clear that the computation @f Ag) can
((@+b)*d)%(|:foo e)-f Ag also occur in parallel. Once these innermost paren-

_ _ o thesized expressions complete, producing temporary
That s, the sum od andb is multiplied byd, that 54y results, we are left with:

result is divided by the result of the transposéoof

applied toe minusf raised to the power. The lin- (T1*d)%(T2-T3)
ear progression of the computation does not imme-
diately suggest that any parallelism is present. Repeating the parallelize-the-innermost-

In fact, there are two types of parallel behavig@xpressions process, we see th@l*d) can
within the expression which may be exploited cofroceed in parallel wit(r2-T3)

currently or separately: It is now fairly obvious that, at any stage in the
evaluation of an expression, there are as many paral-
¢ parenthetical parallelism lel execution threads as there are innermost expres-

sions in the fully parenthesized expression.

Chaining or loop jamming, offers the potential for

. . L arallelism over a different axis. In scalar languages,
In expressions like the above example, it is o

. . . . 1e computation of(a+b)*d would probably be
vious by inspection that computation of all of the ritten an)' ((a+byd) P y
innermost parenthesized expressions can proceed in ’

¢ chainingof partial results, ofoop jamming

parallel. That is, the computation ¢f+b) can oc- do i=1,n
cur at the same time thft foo e) is being com- T1()= (a(i)+b(i))*d()
puted. In practice, care must be taken to ensure that enddo

side effects within called functions, suchfas , or
mid-expression assignméhtio not alter the seman- rather than as:
tics of the expression. Since we assume that func-

tional programming style is being observed, this will do .'=1,” -
not happen. T1(i)= a(i)+b(i)
Since these parenthesized computations typically end(_jo
operate on entire arrays, and sifa® may represent do .Fl’” o
T2()= T1()*d()
SHence its omission in this brief treatment. enddo
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Although code sequences such as the latter agputation of being slow for iterative computation on
rarely written directly, they do arise out of progranscalars and small arrays.
generated code and out of compiler-induced opti-
mizations. Therefore, compilers routinely perford.5 Phrasal forms

loop jamming to reduce them to a form such as: _ _
Phrasal forms include the fork and hook discussed

do i=1,n previously. Since their utility from the standpoint
TMP=a(i)+b(i) of parallelism is obvious, they are not discussed fur-
T1()= TMP*d(i) ther here. More information on phrasal forms can
enddo be found in McDonnell and Iverson [MI89] and in

o ) Mclintyre [Mcl91].
A similar form is also used by some vector super-

computers, nptablythe Cray X-MP, d:ha_lntogether 6.6 User-defined Functions
vector operations, so as to overlap their computation
across several functional units, and to reduce the bidser-defined functions are APL's cognate of func-
tleneck of traffic between main store and the registeisns and subroutines in other languages, and are the
where computation actually occurs. primary method used to create non-trivial applica-
Static analysis of APL functions permits similations in APL. Like other languages, control flow in
optimizations to take place at the expression levaker-defined functions is sequential and appears, in
merging a sequence of primitive functions on arrajgolation, to be inherently non-parallel. Of course,
into an interleaved execution on subsets of the gince user-defined functions may utilize all the forms
rays. This merging makes the expressions amenadflexpression discussed in this section, there is con-
to optimized execution by techniques such as vegielerable potential for parallelism within each sen-
torization, parallelization, and strip mining. IBM'stence of APL. In spite of the apparent plodding na-
APL2 interpreter for the IBM 3090 Vector Facilityture of sequential control flow, there are two ways in
performs loop merging, although the documentatiarhich APL functions may exhibit parallel behavior:
[MMB89] is vague about the extent to which it is ac-
tually done.
Loop jamming has the potential for significant ¢ concurrent inter-line computation
performance in an interpretive environment, because , L
it reduces the load/store traffic associated with array->F MD computation occurs when the function is
valued temps, as well as eliminating the storag@/c’ked multiple times by an adve_rbllal exprgssmn.
management overhead associated with each jamma§ tWo most common forms of this invocation are

primitive. This has the desirable effect of reducif§rough theank adverb and through thendercon-
Ny for the interpreter. [HP9O] Large Ny, val- junction, of which the APL2achadverb is a special

ues are the well-founded basis for interpreted API°85€- _ , ,
Consider a functiom that solves Poisson’s equa-
7N1/2 is a measure of the minimum number of elements rgipn using any of several techniques, such as Jacobi

quired in an array computation for the computer to achieve hal i . . ) . I
of its peak performance on that computation. SiNgg is ef- 8f Gauss-Seidel iteration on a 2-d grid. How can this

fectively a measure of the “0 — 60 time” for a system, the smallB€ applied to Se\{eral independent sets of data? Three
itis, the better. ways come to mind:

e SPMD computation at the function level
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e Modify the function to accept a rank 3, rathe6.7 Composition
than rank 2, argument, and make it explicitly

handle multiple set d3 Composition in J and the SHARP APL dialect of

APL offers significant computational power [Ber87,
180]. Unlike composition in mathematics, which
oes little more than to glue functions together, com-

position in APL also glues together the intermediate

e Use theunder conjunction (&.) to apply results. APL requires that the result of any compu-

the function to each of an array of tabledation be arectangular array. There are ways of get-
p&.> d2a;d2b:d2c ting around this, by use of recursive data structures
or indirection, but they are sometimes inconvenient
Each of these techniques has its own set of agtmessy.
vantz_;lges and dlsadvantagfss. The first one ObV'OUSI%onsider composition in J, denoted&s:ombin-
requires a perhaps non-trivial amount of program-

. . > ~Ing two verbs,f andg. The composition applies
ming effort. Both the first and the second require aﬂ?o each cell of the %rgument(s) pas deternﬂﬁed by
sets of data to be the same shape. The third may%

: . The result of each cellular computation franis
with current interpreters, slower or more of a storailﬂeIen passed tb, without the requirement that each

hog than the first two approaches. Thus, choice of a .
. result fromg be of the same shape. Effectively, such
method depends in part on the set of problems bein I T
composition lets upipelinearrays from verb to verb,

solved, and partly on taste.

offering considerable convenience as well as a great

The first may or may not exhibit more parallelisr‘aeal of MIMD parallelism: Each cell can be com-

than the last two, depending on how the code is writ- . :
: . . uted independently in any of the composed verbs.
ten. If it were to iterate over all sets until all hauEJ

. . ~Unlik i i i
stabilized, then toward the end, it would be wastin nlike the plpes of operating systems, W.h'Ch only
effort on the sets which had already stabilized. On pport a single character vector, these pipes are ar-

a machine with a large amount of fine-grain pararltleys of arbitrary type, rank, and shape.

lelism, this might not make much difference. The

latter two are more appropriate for large-grain par-

allelism, since they decompose the problem into . _—
series of logically independent, fairly large compu6-e']8 Tacit definition

tations, which may all proceed concurrently. _ o )
Inter-line parallelism is essentially the same forf2Cit definition is an extension of phrasal forms and

of parallelism which exists at the expression levdiinctional programming, in which variable names do
Hence, issues of liveness of

except that the analysis extends across sentenB8§.appear [HIM91]. T )
Unlike the naive form of expression level parallelistffiables do not arise, and the compilation task is
discussed above, this form must take assignment &fgPlified in that regard.

other side effects into account, if semantics are to beDonald Mcintyre’s delightful history of mathe-
preserved properly. Since the essentials of inter-limatical notation includes a presentation of eight
and expression level parallelism are much the samatgtistical functions in traditional and tacit form
no further discussion of it will take place here. [Mcl91].

e Usetherank adverfk) to explicitly apply the
function to the rank 2 tables of a higher ran
argumentp"2 d3
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6.9 Gerunds Flow analysis in APL is even more important than

_ in other languages because APL does not have decla-
In natural language, a gerund is the noun form pfiiqns Methods such as array morphology are only
a verb. For example, in the phraggpgramming g\ peginning to be used to optimize APL execu-
is an art the verbto programis a gerund. In J, ion  Gerunds make APL more amenable to flow

a gerund is an array which represents one or moyig, v sis and simplify the generation of high quality,
verbs. Gerunds are manipulated identically to al¥icient code.

other data in J. For example, IF/THEN/ELSE can beGerunds also offer the programmer a direct and
interpreted as using the Boolean value resulting froéﬂnple way to specify MIMD (Multiple-Instruction
the conditional to index a two-element gerund, arM’ultiple-Data) computations. There are several

then applying the selected element to an appropria}gys to achieve MIMD, including agenda and inser-
argument. Gerunds were introduced into J as a WAL of gerunds

to offer a rich set of capabilities including:

« MIMD computation 6.10 Parallelism Measurement Criteria

. . .| have considered ways to measure the potential par-
e control structures including generalized,, .. . o

) ) allelism of an entire APL application, but thus far,

if/then/else, case, do while, etc. . ) e
have not come up with a simple, satisfying met-
ric which is not a function of an arbitrary number
of variables for any but the most trivial operations.
The ability to nest parallel structures within APL

B More mforr(;\a::o_n %r;é:]lerundds _maly be follm%émakes the description of a program’s parallelism a
emecky an ui [ ] and in Iverson[lve tree structure rather than a scalar.

Ive91]. Background material may be found in Ber-
necky’s early work on function arrays[Ber84].
First-classness is not of great relevance to this dig- Processes and Synchronization
cussion, except inasmuch as it enables clean design
of other capabilities, by supporting computation o8s was shown previously, APL has the capability to
functions as data. For example, arrays of verbs m@yscribe parallel computations on a variety of levels
be created, manipulated as if they were data objegithout resort to processes, operating system charac-
then a subset of them applied to data objects.  teristics, process creation, synchronization, process
Control structures are important to highdestruction, etc.
performance computing because they simplify Although these nuts-and-bolts aspects of parallel
control flow analysis and data flow analysis. This ll_fbmputing on today’s machines may or may not be
turn permits generation of more efficient code anth us tomorrow, they certainly should not be em-
enables vectorization and parallelization: bedded in the description of algorithms.
The inherent parallelism of APL handles all of
Loops without dependencies among their the above requirements implicitly. It offers an em-
iterations are a rich source of parallelism  barrassment of riches from the standpoint of paral-
in scientific code [HSF92]. lelism. Unlike other languages, the problem in APL

o first-class treatment of verbs
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is notdetermining where parallelism exists. Rather, APL's inherent array-handling properties and
it is to decide what to do with all of it. functional nature contribute to the reduction in ex-
plicitly coded variables representing array size, in-
duction variables, and so on. With less code and
fewer variables, fewer things can go wrong, produc-

. ing a net increase in code reliability.
As noted throughoutthis paper, the abstract nature o1 .
g hap Although these aspects of APL do not heavily cor-

a language such as APL has a significant impact on te with rcombuter th th
the portability of applications created with it. No clate supercompuer usage, they are nonethe-

only are programs more portable than they wou s noteworthy as being features of the language

be if assumptions about underlying data types al ich help one to obta_un correct answers from_ a
mputer in a shorter timeframe than is otherwise

representations were made, but the performance 3 ol
tential of applications, particularly across wide a 20SSIbIe.
chitectural boundaries, remains higher with abstract

languages than it does with low-level languages sufb Clarity of Expression
as Fortran.

8 Portability

The clarity of expression of ideas possible with APL
9 Bugs over that possible with languages such as Fortran

makes it easier to optimize algorithms and to gain
Notational consistency is an important aspect of APDSight into problems. The performance of an APL
dialects. The language has a simple syntax, and cBtfdel of a loom was improved by a factor of twenty
sistent semantics for both primitive and user-creatéda short time, by virtue of the clarity of the algo-
entities. This means that issues such as@dence, rithm expressed in APL — the APL program con-
a frequent cause of bugs in traditional languages, aigted of three verbs, whereas the same program writ-
simply not an issue in APL. ten in BASIC was more than two pages of code.

As noted previously, the conciseness of APL also Conciseness works well with our short term mem-
contributes heavily to code reliability, as does the iy — we can only deal with seven or eight symbols
herent preservation of type and shape informatiohchunks of information at once, and APL, by con-
with arrays. For example, in the APL model of @ensing expression into a compact form, allows us to
loom [Ber86], there is one parameter — the tieup m@kasp a larger portion of the problem at once.
trix used to connect the foot treadles to the harness -This conciseness also has benefits for compilers,
and two arguments: the threading, which specifieecause APL provides a larger amount of semantic
which warp thread is connected to which harnessintext from which to deduce properties of an al-
and the treadling sequence actually used. The Agarithm, and thereby produce improved, parallel, or
code is entirely functional and clearly correct, convectorized code.
sisting of two index operations and an inner product. The abstraction of APL makes it possible and de-
Contrast this with the several pages of BASIC to pegirable to isolate architectural characteristics from al-
form the same task, in which there is so much bagerithms. This enhances portability, and increases
gage that it is a challenge just to find the part of thie clarity of the algorithm, by not cluttering it up
code which actually does the work! with details about the machine on which it happens
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to be running today. user-defined verb is free of side effects. This is a
design issue, which has been resolved in other sys-
tems by defining the behavior of the each adverb or
its cognate as having undefined application order on

APL has been shown to possess an immense amolhsn?rgument.

of parallel expression, providing a rich blend of

SIMD, MIMD, and SPMD capabilities. It does this]3 ~ Acknowledgments

without compromise — there is no need to embed

machine characteristics within application programiSrofessor Ken Jackson of the University of Toronto

This enhances portability. Computer Science Department encouraged me to
APL’s richness of expression provides significaproduce this paper. | am grateful to Diane V. Flo-

semantic content for the compiler writer, whickes for her editorial assistance.

makes generation of high-performance code an easy

task.

11 Summary

12 Additional Reading

Cann [Can92] offers a number of the same argu-
ments presented here, as well as concrete evidence,
in terms of benchmarks on non-trivial numerical pro-
grams, that applicative languages have the potential
to match or beat the performance of Fortran.

Willhoft's article covers some of the same ground
as does this article. He concentrates on the se-
mantics of each primitive, to present its parallel na-
ture. He does not discuss parallelism at the expres-
sion or function level, nor does he discuss paral-
lelism of the sort expressible by phrasal forms or
gerunds (APL2 does not possess gerunds). Will-
hoft makes pragmatic measurements of the potential
parallelism present in a small number of APL appli-
cations, drawing conclusions which are in line with
those presented here.

Some of Willhoft's recommendations for lan-
guage changes already exist in J, in the form of
gerunds to provide control structures and in the rank
adverb as an axis specifier. Sadly, parallelism in
the APL2eachadverb is said to be unachievable in
APL2 because it lacks the #iby to specify that a
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