Profiling, Performance, and Perfection

Robert Bernecky
Snake Island Research Inc
18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9
Canada
(416) 203-0854
bernecky@acm.org

1 Introduction applications. As well, several case studies are pre-
sented, which are intended to provide some insight

A profile is “a set of data often in graphic forminto how profiling tools might profitably be used in
portraying the significant features of somethingyour own work.

[Web88] Profiles can help us to quickly understand
a person or entity better. In the development gf . .-
computer-based applications, profiles are invaluab%e. The Benefits of Profiling

They help us to understand the application — howit .. . - :
works, how well it works, whether it in fact works asPI’OfIlII’Ig 'S benef|IC|aI to. the software developer in a
we think it does, and whether it is still working théwmber of ways, including:

same way it did last month.

For our purposes, profiling the analysis of a run-
ning computer program in order to determine its ac- ® predicting performance of new applications
tual, rather than predicted, behavioProfiling may
be performed manually, or automatically, with the
aid of hardware or software. The data collected bye as an aid in performing quality assurance
a profiling activity depends on the type of analysis to
be performed, but typically will allow determination Let’s look at each of them in turn.
of instruction mix, storage reference patterns, and in-
struction reference patterns. 3

This tutorial presents several tools for profiling

of APL and non-APL languages and discusses thgjhe of the most common, and most beneficial, uses
utility in improving the quality and performance o profiling is to determine how an application’s per-

*This paper was originally published in the ACM SIGAPIIPrmance might be S_igniﬁcantly imprOV_ed W_ith rela-
APL89 Session Tutorials. [Ber89] tively little effort. In its crudest form, this might be

¢ locating performance hot spots

e performing long-term performance monitoring

Locating Performance Hot Spots

done by a frustrated user who complains to an apjlie record contained the time of day, CPU time used
cation designer that the application is “taking a lortgus far, and the verb name and line number. Once
time to run.” The designer interrupts the applicatidhe application was then run to gather this informa-
and observes that the interruption occurred at Xindion, a post-processor could analyze it to determine:
of verby. If the situation recurs, and the interrup-
tion is always at linex of verby, the designer might e Which user-defined verbs were executed
get the idea that ling has some characteristic which
makes it execute slowly. This may lead to an ex- ¢
amination of that line, and a rewrite of it, intended o now many times each line of each verb was ex-
to produce an improvement in the application’s per- gcyted
formance.

Another industry favorite is the “honcho” or e how much CPU time each user-defined verb
“guru” approach to performance improvements. In consumed
this case, the user approaches the application de-
signer (the honcho) with a problem. The honcho *
makes an immediate guess as to the cause of the
problem, _the_n runs off _and_revyrites some hunk of If this data were to be sorted by CPU time, it
code, believing that this will fix everything. Of

) : Y\{ould give an ordered list of where the largest
course, without some research into the problem, t s in performance might be made. A commonly

honcho is working on the basis of guesswork E:cepted rule in computing, known variously as

hunche_s, and may in fact b“e workln”g_ln a totally Uareto’s rule or the 80/20 rule, is that 80% of the pro-
prodl_Jctlve area. Pe_rhaps huncho” is a better te%ssing of an application occurs in 20% of the code.
for this mode of dealing with performance problem%

One problem with both these approaches is t
they are not quantitative. In neither case does the
signer have anything concrete to say about perforor not at all will not make a measurable difference in

ance, other than that complaints have ceased. Th & ormance.

IS NO assurance that things have _not, in fact, QOt.e%oﬂware-based profiling has a number of flaws:
worse in some other area. There is also no quantita-

tive statement that can be made about the eXten‘ir?éccuracy The ability to exit from a verb in mid-

the claimed improvement. line, rather than by falling out of the bottom of
These haphazard approaches can be replaced by e yerh, can cause data to be lost or to be mis-
one in which the hardware or application is instru- leading.

mented to provide information about what the appli-

cation is doing. In the case where no pre-existittgisenberg effectsThe time required to sample
tools can assist in this instrumentation, the applica- clocks, write data to file, and so on may inter-
tion writer must insert code to collect that informa- fere substantially with the operation of the ap-
tion. For example, each user-defined verb mighthave plication. In the case of real-time applications
code added to it which writes a record to a file each which must react to external stimuli at rapid
time a specific line of the verb is executed. Assume intervals, the measurements may be skewed to

which lines of each verb were executed

how much CPU time each line of each verb con-
sumed

?suming this rule holds, the list obtained above will
Bcome uninteresting after the first few entries — im-
Ffovements made to code which is executed rarely

2

the point of meaninglessness. By the time ode Performance Prediction
event completes, including time spent monitor-

'{_}? 't_’ I 'S _tllme tohdejl with _the E)v_ent_ allg‘z:nWhen designing new applications, it is often impor-
IS Is similar to the Uncertainty Principie deg, 14 pe ahle to predict how well they will perform

scribed by the physicist Heisenberg: it is n%lts the size of the problem or associated databases

Fiof)S'Ele FO measure something without alter"bgow. A profiler can assist in this process. As an ex-
IS behaviorin some way. ample, consider an application in which news stories
from a wire service are archived in a data base, to be
Introduction of errors The act of altering the ap_accessed by users who would Hse ful text se:archlng.
The user might make the following query: “Show

plication in order to instrument it is liable to Il stori taining the oh cold nuclear f
introduce errors into the application. The g€ all stories containing the phrase ‘cold huclear tu-

rors may be due to incorrect installation of thlgIon , but not the word ‘palladium’.” Assuming the

. . . will continually grow in size as more arti-
monitoring code, or to assumptions made in t ?atabase continually g

original application, which render it sensitive t§ esf, are addﬁd tolt, it ﬁ critical that the t[[r;e tell_ken t?
certain types of modifications. Use of absolyfeS"OrM SUCN a Search grow no worse than finearly
with the size of the data base. In fact, one would

line numbers is an obvious form of a poor pro-tt to desian it so th h i bli
gramming practice which could lead to failure® c 1Pt [0 dESIGN L SO The search time grows sublin-

of this type. The real problem with applicatior"?arly or not at all.
alteration is that it constitutes a form of main- Assume that the application exists, and we wish
tenance. The probability of getting a maintdo ensure that we have achieved our goal. To this
nance change correct on the first try has beefd, we make repeated runs of the application un-
measured at roughly 50% if fewer than 10 lineder control of a profiler, with a number of grow-
of code are changed, and much less as the vieg databases. We then plot the CPU time used in
ume of the change grows. [MM83] each line against the database sizes. Any non-linear
growth will be obvious, to be attended to before
it reaches crisis proportions. In a related fashion,
Performance The overhead of the instrumentatioohanges that improve performance will be quite vis-
software may be unacceptably high. If monitoible as a reduction in the slope of the lines.

ing a critical transaction-based system causesfijers can also be of use in predicting perform-
the transaction time to rise from .5 seconds .6 quring the course of program development:
10 seconds, then so_ftvyare-based profiling mgycolleague, Karl Dawson, implementetiar, an
be unacceptable. This is an extreme form of the . _searching primitive verb, for SHARP APL, by
Heisenberg effect. first modelling it in APL. He then used a SHARP
APL profiling facility, Ofm, in conjunction with the
APL model, to predict actual interpreter perform-
Although these flaws cannot be totally removednce. This methodology allowed him to create com-
they can be managed by providing hardware or sgfilete test scripts before any actual code had been
ware assistance. These will be discussed in a lateitten, and gave considerable insight into the value
section. of several proposed special cases for the primitive.

5 Long-term Performance Monitor- profiles, for at least two reasons. First of all, the vi-
ing sual nature of a plot will make performance trends
stand out clearly. Second, if for some reason the pro-

Performance monitoring of a running application fder, logger, or plotter ceases to work, you'll find out
often abandoned, on the assumption that it's workig§out it sooner. There is nothing more frustrating

perfectly, until the day when the users come screatian going to a log file to look for historical data that
ing thatyour application is running so slow that it igwill pinpoint a problem, and discovering that no data

unusable, and that they are going to: has been collected for six months because the log file
was full.
e take you to court A profiler should allow information to be collected

easily without altering the application. This encour-
ages its use in conjunction with the actual production
e demand a refund code, rather than with a modified version that may
not reflect reality. In addition, developers are more
likely to make use of profilers if they are extremely

e all of the above easy and convenient to use, than if they require te-

dious planning and effort to use.

On that day, management is likely to suggest that aData collection at the line by line level allows
quick fix of some sort be cobbled togethigtht now. early detection of potential bottlenecks before they
This will usually result in code changes which end wgre visible in the aggregate of total CPU or elapsed
being too expensive, poorly designed, a maintenanicee. For example, in a transaction which takes ten
nightmare, and inadequate except as a temporary sgeonds, the time required to hold a file to prevent
cumvention. Significant effort will be required lateigoncurrent updates might only take a tenth of a sec-
not only to correct the original problem, but to undond. Normal variations in aggregate execution time
the quick fix. might be more than a second. If the time to per-

An automated monitor in place on such a criferm the hold started to grow exponentially, it might
ical application could call attention to a mounthave to increase by almost a second before a human
ing problem long before it reaches crisis propowould notice, at which time it might be too late to
tions. The problem could then be addressed irtake thoughtful corrective action. Analysis of de-
cool and collected fashion, without earning the ire tdiled information of this sort can provide valuable
the users, and without developers developing ulcesaly warningswhich make everyone’s life easier.
from working 24-hour days. The idea is to be able tpredict changes in usage

An automated monitor could execute typical tranpatterns, and changes in load patterns before they
actions at regular intervals under the control of a prleecome crises, by watching for non-linear growth
filer, recording the profiler results for each transatrends.
tion. Another task would periodically analyze the Profiling activities shouldn’t be restricted to ob-
profiler information and send an electronic maikervations of processor time only. Elapsed time vari-
box message or other alarm to appropriate partagons can be very enlightening. By showing where
if elapsed or CPU times began to edge up to unaeal-time system delays are occurring, they can high-
ceptable levels. It's advisable to both log and pléght problems in such areas as file system I/O queue-

e not pay their bill

e Qo to your most unfavorite competitor

4

ing, shared variable processor or other communic¢awnes that much to correct. [Boe74, Bro74]. An er-
tion bottlenecks, and locking delays on files or othesr found after product shipmentis extremely expen-
serialized resources. sive — customers get upset, amdopies of software,
Finally, if a real problem surfaces, and no higather than one, have to be repaired. This of course
torical information is available to support analysigffers opportunities for new problems to creep in —
the power of profiling tools as dynamically alterfix not applied, fix applied incorrectly, and so on.
able instrumentation can help to pinpoint the hot spotGiven these changing times, it behooves software
quickly and precisely. vendors to take whatever steps are required to en-
sure that their products are as predictable as possible.
Profiling can help this process in two ways: It serves
6 Quality Assurance Tools as a mechanism to support claims about product re-

liability, and it ensures that performance claims will
There is no practical way to prove that a computge met now and in the future.

program will function correctly. The best we can do
today is to employ the best designers and program-
mers we can find, prototype our designs, ensure tiflat Test Suites
designs and code are meticulously vetted by inde-
pendent, objective judges, and perform quality aBest suites are scripts written by software develop-
surance tests as a verification step, to further suppend to support their claims that their programs in fact
our belief that the application works correctly. operate as designed. However, software develop-
In the past, courts have been rather lenient on ks are Panglossian by nature, and rarely exhibit an
computing industry as a whole, probably becauseagipropriate degree of skepticism about the reliabil-
the infancy of the profession. However, as the indugy of their products. Casually designed test suites,
try matures, it will have to accept a larger measure thierefore, may in fact deal with only those areas of a
responsibility for errors caused by computer-basptbgram about which the developer was concerned,
applications. If a bridge collapses, the engineers waiad ignore large areas which “couldn’t possibly have
designed it are probably in very hot water. Similarlfugs in them.”
if a faultin a computer program causes death, injury,A profiler can be a valuable tool in assisting soft-
or significant financial loss, and the vendors of thetare developers to remove the blinders from their
program cannot show that they took all reasonaldges. They are secure in their knowledge that their
efforts to ensure the correctness of that program, thede is bulletproof, secure in their knowledge that
the vendors, and perhaps the designers themseltlesiy test suites are a complete test of their code.
are in line for civil and perhaps criminal action. Now, introduce a profiler, and ask no more than that
Performing quality assurance procedures on cothe developer prove, rather than claim, SO coverage;
puter programs pays handsome divdends. It is wilht is, mere execution of all instructions in the pro-
known that the cost of repairing a fault in a progragram.
increases by orders of magnitude as the implemenThe results are eye-opening: Test suites rarely
tation proceeds. An error discovered in the desigover all the code. Developers are often at first puz-
phase is relatively inexpensive to remedy. An erled by this revelation. Next, they take steps to cor-
ror discovered during development costs perhaps tent the problem, and rewrite the suites to cover the

5

missing areas. When they see the results, they berns.
come converts.
Developers often consider formal test suites to be
a waste of (their) time, because “It's going to bring
my development work to a halt! We'll never deliveB A Few Profilers
on time!” Also, they are often offended by their man-

ager even suggesting that they write test suites, c@hnumper of profilers of various degrees of sophisti-
sidering this to be an attack on their competence.cition and convenience are available for most com-
is difficult to sell them on the idea. In my experiencsuting languages and systems on the market today.
with a large development group, the only effecti@/hat follows here is not a survey. Rather, it is in-
approach has been: “Just try it this once, and SgRded to describe a few of the capabilities and limi-
how you like it, ok?” Once developers realize hoyyiions of several profiling tools (and facilities which
their code quality has improved, they buy in readilyaye peen bent into profiling tools) that we at I.P.

People like to do the best job they can; they'll usgnarp Associates have used for our own work.
tools if they see a real benefit in doing so.

Besides serving as obstacle courses for system al-
terations, test suires also provide a handy benchmark
for performance analysis purposes. If your new, iy Profiler Environments
proved system survives the obstacle course, but takes

twice as long (or even 5% longer!) to run it, are yoy .. , - .
g(6 longer) y Hrofllers perform their work within a specific com-

likely to knowingly unleash it on an unsuspectinguting environment. In APL, they are associated

public? : o 2
) : with a specific APL task and application under the
Finally, complete test suites allow those poor souls . .
y P P control of one user. The tool provided with MVS (an

who are responsible for product support to ha .
some faith that a new product may in fact work EEM operating system for large computer systems)

advertised or better. The ability to rigorously te%\?/hlij;:] arl:?/ ﬁ,[sfgc:{;‘;ee)dn;’v;t: :nzfgilgﬁsggzi 2?‘3(;:5
a system you're going to end up supporting, rather 9 P : o
. . . In, VM (another IBM large system environment), it
than taking a developer's word on its robustness %gdassociated with girtual machinewhich may re
correctness, offers some peace of mind. & yrep

Suitably written test suites allow obstacle courscra%sent either one or many APL users.

and performance measurements to be automated, rd-N€ APL-based tools are oriented toward APL ap-
ducing the human effort required to support an otRlication writers, and have all those characteristics
erwise labor-intensive activity. Such tests can §aat APL users expect and enjoy: ease of use and
run before and after each system change is releadéinan-comprehensible results.

to nip problems in the bud. Chasing performance The operating system-based tools tend to be ori-
problems months or years after they were introducexted toward assembler code programmers, and have
into a system is extremely difficult — old code simall those characteristics that their audience has grown
ply stops working, due to lack of storage space fay expect. They're not exactly suited to the job, but
backup copies, incompatible operating system upith enough effort, you can bend them to work. Sort
grades, and other such mundane but all too real cofi-. . more on this later.

6

10 APL Profiling Tools IBM offers a performance monitoring tool with
. _ _ APL2 called TIME. [IBM87] As of the publication
SHARP APL's Function Monitor,0fm, provides deadline for this tutorial, | was unable to find any

the following information for any user-defined verlgocumentation describing its precision or ability to
which it monitors: [I.P87] handle recursion.

Line counts provide information on how often each
line in the verb was executed. 11 Operating System Profiling

Elapsed and processor timeis supplied for each Tools

line, including and excluding time spent in _
verbs invoked from that line. IBM provides VM TRACE for VM, and SLIP/GTF

for MVS. SLIP is a generalized tool which IBM of-
Configurable design gives you control over whichten uses as a problem determination aid; i.e., “When
verbs are to be monitored, and can control tld@es my program get to instructiss?” When pro-
level of detail of information to be collected filing, the question more often asked is: “When does
summary information of one line per verb, omy program get to instructions+1n?” The Gener-
highly detailed information on a line by line baalized Trace Facility (GTF) is used in conjunction
sis. The design is flexible enough to allow easyith SLIP to intercept and process the events gener-
and consistent extension in the future to suppaited by SLIP.
new monitoring capabilities. One way SLIP/GTF can be used to perform pro-
. . . filing is as follows: The user configures SLIP to in-
Timings are precise to the level ‘?f the u_nd_erlymg,terrupt the executing program whenever an instruc-
system processor t|rt1er, typically within a Migio o interest is executed. SLIP does this by con-
crosecond. .You dont have to run be_nChma”fﬁtioning the underlying S/370 PER (Program Event
for long periods of time to get meaningful rePecording) hardware to perform that task.
sults. When a PER interrupt occurs, GTF processes it,
Monitored information is correct whenever it is takes some action, and returns control to the exe-
sampled, even within recursive, pendent, or sugiting program. In spite of its name, GTF's capa-
pended verbs. bilities in this regard are quite limited, and about
the only practical action which can be taken for in-
The power ofJfm became obvious to developstruction tracing is apparently to ask GTF to write a
ers here on the day it was released on our intertralce record to disk or tape for each instruction inter-
SHARP APL system. The elapsed time from theepted.
point when the VIEWPOINT development team ob- For any realistic profiling work, VM TRACE and
tained theOfm documentation until they had use&LIP/GTF are inadequate. To see why, consider a
Ofm to obtain a 25% CPU time reduction in theeal example chosen from the I.P. Sharp archives.
VIEWPOINT Report Writer washreehours! A performance problem had been reported in the
STSC offerdIMF, a Monitoring Facility for their SHARP APL newly released R19.0 interpreter: A
APL systems. [STS88]MF provides a subset of theuser claimed a specific application ran slower than it
services provided by fm. did in the previous release. In the course of studying

the problem, | had gotten to the point where it wability to write its trace information on magnetic
clear that a problem existed, but | had been unablegape. We restarted the application after configuring
determine what change in software was responsid&F and SLIP appropriately, at which time, GTF
for the problem. A search of our software chandeppily started to spin tape, writing trace records.
log, SOFTLOG, showed that hundreds of softwardter a while, it started to write a second reel of tape.
changes had been made to the interpreter since Then a third. We left for dinner at this point, and re-
earlier release and that factoring out the changesthyned several hours later to find a mound of tapes,
backing off each set of interdependent changes andlightly disgruntled computer operations staff, and
running the affected application was simply impra¢apes still spinning. At this point, | decided to cut my
tical. losses and analyze what | had obtained thus far.

We decided that an instruction trace of the appli- The results were less than encouraging for some-
cation running on the two software releases mighime who was hoping to make practical use of instruc-
provide enlightenment. The tool closest to hand wten tracing as a way to solve all the problems known
VM TRACE, so we started with it. to mankind. That particular ten-second test would

VM TRACE was designed as an aid for progranitave run for about two weeks of dedicated proces-
mers, to let them step through programs and dispkyr time, and have written roughly 600 reels of tape,
the result of executing each instruction on a terminad 120 gigabytes of trace information! The war sto-
or to write a line on the “vm print spool queue,” traries and jokes which arose from this event led, in a
ditionally used as the repository for data destined fday or so, to the design and development of SPY by
a physical printer. Given a suitable amount of moheigh Clayton, as a result of a suggestion from Kirk
keying around, itis possible (not convenient, but polserson.
sible) to capture this printer file data and copy it to a The basic problem with the IBM-provided tools is
normal file where it can be analyzed by a programthat they were not really designed for the kind of use

Knowing that the application was likely to execut&o which we were putting them. They were designed
lots of instructions, and being concerned about hawe- be used with events which occur infrequently —
ing to analyze a large quantity of data (one record perce per minute or hour — instead of at megahertz
instruction executed!), | chosevary small applica- frequencies. The PER hardware was doing its job
tion test, which normally ran in about ten secondsmiite well, but the operating system supports for that
on an IBM 3090 class processor. | started a test shsrdware were simply inadequate. However, |.P.
tem with only one user on it, configured VM TRACESharp was, and is, a society of toolmakers. When
as required, and started the application. Howevere find available tools lacking, we build new ones to
there was a problem — the disk space assigned fimeet our needs.
printer files in most shops is painfully inadequate for In 1974, | created a “PSW Sampler” as a way to
the quantities of data being called for here, and whda statistical profiling. Similar in spirit to hitting
a trace fills up that disk space, everything stops. Nireak” on a running application periodically “to see
just your job, but every job in the shop which wantsow it's doing,” the PSW Sampler used timer de-
to print something. It's quite user-hostile, and nddys to interrupt the running APL system and build
the kind of thing which exactly endears one to tree histogram of PSW values encountered in APL at
operations staff, so we gave up on VM TRACE. those times. In the S/370, the PSW (Program Sta-

Next, we tried SLIP/GTF, which at least has thieis Word) is akin to)SI in APL: It tells you what

8

program is executing, and where it was when you ih-

terrupted it. Using the PSW Sampler, we determinedSPY has been a wild success from day zero. It
that syntax analysis in APL consumed 10% to 158tlowed us to gather the precise statistics we re-
of the processor time associated with most appliepsired in a few minutes, rather than weeks, and the
tions, with storage management functions runningpast-processing task requires only seconds to pro-
close second. The problems with the PSW Sampigsss roughly a megabyte of data, instead of hundreds
grew out of its statistical nature. It gave a fairly goodf gigabytes. Thanks to Leigh’'s expertise, SPY’s
gross picture of the system, but wasn’t reproducibleyerhead is quite low — a factor of about 30 slow-
couldn’t perform total code coverage, and was udewn instead of thousands. This allows it to be used
able to monitor certain parts of the system, such fas high-volume event tracing, and to be realistically
serialized code. Because of this, the PSW Samplgfed to monitor real applications.

got dusty, and stopped working around the time weAccording to Leigh, SPY doesn't stand for any-
switched from SHARP DOS to MVS. But it wasn'thing beyond its obvious cloak-and=dagger denota-
really missed until Leigh recalled the PSW Sanion. | prefer to think of it as the Sharp Performance

pler's technique of using a histogram, rather thamrdstick, but who am | to dispute the meaning of a
writing data to a file. Realizing that this approachame? Juliet?

could be used with SLIP to efficiently achieve most
of our requirements, Leigh designed and wrote SPY.
12 Case Study - Storage Manager
SPY runs in conjunction with SLIP, intercepting
the PER interrupts and processing them itself, the performance problem mentioned earlier is a
build a storage-resident histogram of instruction exgrime example of how suitable instrumentation al-
cution. The requirement specifications for SPY wefgws rapid focusing on the true, rather than suspected
that it minimize the number of instructions reqmredause of a prob|em_ In software of any Comp|exity,
to trace a single instruction, that it not perform I/Q |ong-standing performance problem that cannot be
while tracing, and that it produce a histogram, rathgftributed to any specific change to the system s hard
than a history trace, to minimize post-processing fgrtrack down. Queries to involved developers of the
quirements. form “Do you recallany changes you made which
_ _ _ have even the most remote possibility of causing the
SPY is a hybrid system, written partly in S/37@roblems we're seeing?” result in a “No flies on me,
Assembler COde, to handle the sensitive PER intﬁliate!” response from all of them: thé(yowtheir
rupts, and partly in SHARP APL, to provide backcode works perfectly — the problem must be some-
end analysis capabilities such as instruction coWHe else’s. There is no way to assess which area is

summaries, instruction count detail reports, and coglefault except by backing off changes one at a time
coverage reports. The use of APL also offers signifi-

cant flexibility and convenience in modifying and ex- AUTOTEST is a capability of the IBM S/370 Assembler,

tending SPY’s capabilities. For example, it was triyvhich was introduced in the mid-60's as a debugging aid, but
. . . hich has not been supported on any recent operating system
ial to extend SPY to include reporting to the asseIJf)g'fered by IBM. It took a fair bit of hunting to locate anyone

bler code label level, once we obtained document{gso knew anything about AUTOTEST, but Dave Kerr of IBM
tion from IBM on the format of AUTOTEST output.Toronto finally came through for us.

9

until you find the offending one. In a complex sysn spite of the fact that other system changes resulted
tem, where changes often interact, this is a problémmany fewer calls to it (248 versus 406). This made
of Gordian-Knot complexity, and is simply impossiit abundantly clear that our problem lay in SBREAL.
ble to solve. A detailed instruction trace in SBREAL showed

SPY allowed us to nail the interpreter performanc obvious fault. The fault was quickly corrected,
problem in a few hours — we had been chasing thad the system tested again. Results were gratifying.
problem unsuccessfully for more than aweek. Not only did the application run faster now than in

We obtained a copy of the application that the usR.7.0, but weprovedthat we had resolved the prob-
claimed ran degraded under the new release. Thiem by direct, quantifiable comparison of instruction
with the help of Karen Brant and Gary Wride, botbounts on a function by function basis. The instruc-
of whom were then members of the Software Cdion count for SBREAL dropped to 2.8 million, in
ordination Team, we ran the application under bolihe with the author’s expectations, which were that
releases. Our measurements substantiated the uSBREAL in R19.0 should cost less than it did in
claim of degraded performance. R17.0.

This step was required because the application it4n the next months, we used SPY extensively on a
self had been substantially rearchitected in the int@ismber of benchmarks of our own, and on a num-
val, and we wished to make sure the problem wBgr of benchmarks supplied by OEM and inhouse
really there, as described. We then reran the ap@iHARP APL sites, with the intent of improving
cation under SPY with both releases of the systeBHARP APL performance so that all benchmarks
to determine where the discrepancy in performangguld perform significantly better than before. This
was coming from. effort paid off handsomely, as Figure 17 shows. Re-

The results were eye-opening. Within an hour, Wease 19.12 of SHARP APL offered substantially im-
determined that a change to the storage manager pasted total CPU time reductions for a wide range of
introduced a fault which rarely affected applicationgpplications, all achieved in a short period of time.
but when it did, the effect was dramatic. Figure IWith SPY, we rapidly located hot spots in the system
gives a comparison of the first few lines of outpufrought on by a number of very different applica-
from both runs. Let's do some quick analysis of thegi@ns, and quickly cool them off.
results. “TOTAL” is the count of actual relevant in-
structions executed. It is quite clear that an unde-
sirable change has occurred in this test — 49 millidk3 Case Study - Formatter
versus 53 million instructions — degradation of more
than 10%. | was able, in the course of a few hours, to improve

A look at the more detailed information belowhe performance dafifmt, at a time when that wasn't
shows that AFMT is clearly the heavy user of cyeven my prime concern. | had made some rather triv-
cles on this job, weighing in at 14.24 million instrucial changes to the formatter, and was writing an SO
tions. Since both counts are within a tenth of a pareverage test suite for it. SO coverage is by no means
cent of each other, we know that AFMT is not ous complete test, but it has a well-deserved reputation
problem. Ditto for SABI and FUNSCAN. But whatfor exposing code faults. In the course of writing
about SBREAL? It went from 3.3 million to 8.3 mil-the suite, | stumbled onto a program fault which had
lion instructions, clearly a change we didn't expedbeen in the code, undetected, for eleven years. After

10

fixing this, | ran my completed suite under SPY. and careful analysis to resolve the differences.
Figure 17 shows a fragment of the result of “SPY- SO coverage also turned up some unreachable
ing” in order to achieve SO code coverage. An APtode, which proved to be faulty search loops. | was
function called COVER analyzes a SPY histograrable to replace these by one line of inline code —the
an assembler code listing, and a load module, to pfastest line of code is the one that isn't there. It's also
duce a report highlighting the lines of code whictine one that fails the least!
were not executed during a particular test suite. TheOn the performance front, it is often handy to
missed lines are indicated by question marks. be able to obtain real instruction counts when com-
The version of COVER described here annotatearing two versions of a component, because the
the entire assembler code listing. A variant @mount of other changes involved (other develop-
COVER, which | find more convenient to use, pranent work, operating system upgrades, faster pro-
duces only the non-covered lines as its output. Whesssors) may be such that it is impossible to obtain
the output is an empty array, youre done. Thiseaningful measurements otherwise. It also offers
empty array is no joke! a way for developers to quantify their improvements
It is often enlightening to browse through codkeyond vague measures of CPU time. Figure 17 con-
coverage results in detail, as potential bottleneckains excerpts from the APL function SPYSUMM
obvious bugs, or shortcomings may come to lighexecuted against two versions@fmt, before and
The fragment of code in Figure 17 is taken from aafter the changes described earlier.
old version of00fmt. | have annotated the listing Several items are worth noting here: First, we
by replacing the assembler-generated code with tireestamp all data sets, so that we have a way of
instruction counts which resulted from executing ensuring that we are in fact analyzing the correct
simple format expression on a 5000-element arraydata. In a large development shop with many op-
In Figure 17, it is obvious that the four lines starerating systems running at once, it is easy to get con-
ing at L5H are being executed far more often thdnsed and analyze old data or someone else’s data
any other in the code fragment. In fact, several miby mistake. Second, note that the number of dis-
utes of analysis showed that the loop performed bigict instructions executed has decreased slightly. If
those lines could be replaced with non-looping cotldhad not made changes that would lead me to ex-
which indexed a table. An hour of coding and testimgect a discrepancy of that sort, | would go back and
produced a significant speedup of the entire formé&tok more closely, to see what else had unexpectedly
ter. changed, perchance to turn up a bug. Finally, the
Although the above example shows inline codmost interesting part: the relative instruction counts
| usually sort the report by instruction counts, tof 5.5 million against 4.3 million show a clear per-
quickly highlight the large CPU burners (a la Paretdgrmance improvement of 22%. Not bad for a few
Reports of the above nature are valuable when deurs’ work!
veloping code. If | believe that a specific piece of A lesson to be learned here is that although any-
code should be executedtimes per data elementpody could have looked at that code and immedi-
then | will be able to predict what the report contengely seen how bad it was, nobody had done so. (I
should be when executed with a specific test suifeel compelled to point out that the formatter code in
and thus verify that things are working as expectegliestion here was not written by an I.P. Sharp em-
Deviations from the expectations are cause for alaptoyee).

11

A benefit of profiling is that it directs your atten- The set ofv-digit words summing te is:
tion to the root of a problem immediately and force- ((a=bd+.x19)Aw=+/bd)#bd
fully. The importance of this cannot be overstated. One heuristic in Cross-Sums is determining the
In theOfmt study, changing 10 lines out of 200,008et of digits which may validly occur in a partic-
made a significantimprovement in performance. Théar square. And-ing vertical and horizontal sets,
television repair technician who charged 50 dollassing A51 and inner product, eliminates impossi-
for two minutes’ work to replace a tube (thisis an olble choices. Process of elimination is the key. For
story) said “That’s 1 dollar for the tube and 49 doklany puzzles, this suffices. For harder ones, recur-
lars for knowing which one to change.” It's the sam&on based on guesswork is called for.
with performance improvements: you have to know In order that data entry for the puzzle should be
where to look, and profilers are a very inexpensigénple — many puzzles are harder to type in than they
way to learn where to look. are to solve — | chose complex numbers as an obvious
(to me) way to enter values. (It turns out there is a
much simpler method, but | won't discuss that one.)
My function solved most puzzles adequately, but

Although supercomputer applications such as coHﬂNas slow. | decided to apply profiling witifm

putational fluid dynamics, ray tracing, and petroleuff determine where the time was going. | used the
exploration are getting a lot of press lately, other ngUde APL functions shown in Figure 1.
jor computing challenges are worthy of our attention.
Some of these Everests, including Conway’s GaridY o ,
of Life, New Eleusis, and Rubik’s cube, have beetia' by monitoring everything:
addressed in the literature, but others have inexplica—sg(galll;lsggg 'ni 'd © tgetall
bly remained unchallenged_. [Ber81, Dub71, McD87, 5 460844 fa?mjlus

Pee84] One such problem is Cross-Sums. 1 106521 cs

Cross-Sums resemble crossword puzzles, except116 88739 white

that: 15 26492 hnum

15 26334 vnum
The first column is the number of times the verb
¢ the clues are the sum of the digits in the wordin the third column was invoked. The second col-

_ umn is the number of CPU microseconds used in

* no word contains a zero the verb. Clearlyadjust is the major eater of re-
sources here. Taking a closer look at it, by monitor-
ing just that one verb in detail, we sée:

Cross-Sums puzzles can be found in almost any
Crossword Puzzle magazine. setfn'adjust'
Since duplicates and zeros are forbidden, c& 'n1' ¢ getfn'adjust'
Boolean dictionary of valid words for Cross-Sums 2The brackets surrounding the line numbers have been elided

IS: to make the examples fit in a two-column display format for
bd«(9p2)Tel 012%9 publication.

14 Case Study - Cross Sums

Let's apply these to the Cross-Sums program on
pical puzzle. Since we don't know anything, we

e the words are integers

e no word contains duplicate digits

12

244 7488898 1<(sums=s[i; 1+''Pjl)#seas other game, we pick oadjust again. It's still the
544 12;3(2)23 lb[;l”]*lb[j\l”]“’i 0 VA1 major CPU user, and hence is the area we can still
44 2 14(H/m=1+. Am)#L probably squeeze the hardest. Tdetfn results

Again, the first column is the number of calls, and© shown in Figure 2.

the second is processor time used. The third column' '€ Problem here is that this release of the sys-

is, of course, the text itself. The first line, which i£&m didn’tspecial caseack w, butran itthrougha
the largest consumer, is puzzling (no pun intended gne_ral adverb_support facility. The proper solution
it is fairly simple APL, and not the sort of thing one® this problem is to lean on the software vendor, but

would expect to cause problems. Here is another |8%2YPe we can do something quicker. If we just re-
son of profiling: Bottlenecks occur where they wiliShape the arguments so they match, we get the results

not where you expect. shown in Figure 3. o
Decomposing line 28 into two lines, to determine NOt bad — we knocked that one down a fair bit

which part of the line is the offending one, yields th@S Well. How did we do? Well, final comparisons
following output fromget £n: showed a reduction in processor time from 212177 to

80692 — a factor of 2.6 improvement in about a half
hour of analysis and programming time. This sort
of improvement is typical for small applications, but

larger applications will take more time for changes
of this magnitude — 10% of a large amount of code
is still a large amount of code, and the time spent in

Sm?e the rest of the old Ilne.28 .doesn’t even aghalysis, planning, measuring, and actually changing
pear, it's clear that the problem lies in theBut how cgde will be proportionately larger

can this be, since equality is such a simple function
Maybe it has something to do with data types? In

fact, when we look closer, we see thais a com- 15 Perilous Pitfalls of Profiling

plex array, andsums is an integer array. | forgot

to convert the complex input data to integers durifgofiling is not without its pitfalls. The Heisenberg
setup. Now, modify things to ensure everything §ieractions of almost any profiler can produce mis-

244 707791 29 l<sums=1
244 144244 36 ibl;i;jl<ibli;j1AS1 0VA1L
244 62117 35 1<((+/m)=1+.Am)#1

integer, and try again, from the top: leading results. For example:
setall ¢ Hcs 'nl' ¢ getall
30 658678 adjust Storage required for profiler history information
2 461912 fillh can alter the behavior of a system. In APL with
1 102782 cs Ofm, this might manifest itself as either WS
116 88496 white FULL or degraded performance.
15 26688 hnum
15 26672 vnum Real-time systemsmay exhibit extreme sensitivity
That's better — we chopped the costafjust in to performance degradations caused by profil-
half! It turns out that there are other complex number ers. In the case of some tests | have run on a
problems still lurking about infi11 and £il1lh, time-sharing APL scheduler, the profiler over-

but we’ll correct those behind the scenes. Going after head was such that the test woulevercom-

13

plete, because the timer-event-driven scheduler Use profilers as one more element of your Qual-
kept getting further and further behind in time. ity Assurance toolkit.

Validation — When using profilers to gain confi- Now, go forth and multiply your productivity with

Wait — Don't use profilers to improve performanc

16

dence about the validity of test suites, it is improfilers!
portant not to treat profiler results as a panacea.
Test suite results must be verified to assert tx% Ack led t
the program is producing correct results as wett. cknowledgements
.Thls may seem obwous,_but Itis somethlngth%e tools and techniques described in this tutorial
is often overlooked by suite authors. Regression
. regresent the research and development efforts of a
tests should be added to test suites, to ensur .
: . number of APL professionals once known collec-
that program faults which were not picked up
by extant test suites have in fact been repaireI ely as the APL Systems Development Department
y . of'l.P. Sharp Associates Limited. Without their ideas
andstayrepaired. . . :
and devotion to excellence, this tutorial could not ex-

'ést. | am further indebted to Elena Anzalone for her

until after ensuring that you have a proper ddneticulous assistance in editing this tutorial.

sign. Tolerating poor design on the assump-
tion you can profile your way out of any per-
formance problems which occur is naive and
shortsighted. As a good example, a lot of the
code we optimized in the Cross-Sums example
is wasted effort: that code is continually recom-
puting numbers which could be computed once,
during initialization, if a slightly different de-
sign was chosen. Instead of making it run faster,
we should instead havemovedt — the fastest
code is the code that isn’t there!

Summary

Profilers can assistin making dramatic perform-
ance improvements in applications.

Performance problems occur where they will,
not where you think.

Use profilers, logging, and plots to monitor crit-
ical applications over time, to predict problems
before they become crises.

14

V setall
[1] 41 Ofm Onl 3
\Y

V r<«getall

[1] r<Onl 3

[2] r«(L(2491+"1 Ofm r)x¥1- 1 1e6)>r
[3] r<%¥srtc r

\Y

V setfn w
[1] -463 Ofm w
\Y

V r<«getfn w

[1] r<l 1 d1eb6xv1+2t°1+ 62 [Ofm w
[2] w<' ',(50-"14Pr)+91 [dcr w
[3] r<r>('[55]1'95(—dio)+114Pr),w
[4] r<¥srtc r

\Y

V r<srtc w;i;0io;b

[1] Oio<«0

[2] i<Vb<,0 1+>w[O0]

[3] b«(bl[i]#0)/1

[4] b«(6LPL)PDL

[5] r«(>wl0]1)[b;l1>(>w[1])[b;]

\Y

Figure 1: Simple APL profiling functions

244 136209 33 ibl[;i;jl<ibl;i;jIAS1 0 VA1
244 05867 28 l<«(sums=sl[i; 1+''Pjl1)#seqs
244 61620 32 1<((+/m)=1+.Am)#1

Figure 2: AND-rank-k profiling details

15

244 96285 28 l<(sums=sl[i; 1+''Pj1)#segs
244 81575 33 m<«ibl[;i;jl ¢ ib[;;j]«m/\Q((me)pV%l
244 61878 32 1< ((+/m)=1+.Am)#1

Figure 3: Reshape profiling details

16

References

[Ber81] Michael J.A. Berry. APL and the search for truth: a set of functions to play new el&Gh.
SIGAPL Quote Quadl2(1):47-53, September 1981.

[Ber89] Robert Bernecky. Profiling, performance, and perfectioM@M SIGAPL APL89 Session Tuto-
rials. ACM SIGAPL, August 1989. ISBN 0-89791-331-0.

[Boe74] B.W. Boehm. Software engineerin@EE Transactions on Computeks-25, 1974.

[Bro74] F.P. BrooksThe Mythical Man-Month: ESsays on Software Engineerwdylison-Wesley, 1974.
[Dub71] J.Duby. Algorithm 70, conway’s game ‘lifeAPL Quote-Quad3(2-3), 1971.

[IBM87] IBM Corporation.APL2 Programming: Using the Supplied Routiygs20-9223-1 edition, 1987.

[I.P87] I.P. Sharp Associated LimitedQuadFM: Function Monitor Facility User Guidepublication
code 0842 99-1 edition, 1987.

[McD87] Eugene E. McDonnell. LIFE: Nasty, brutish, and shé&f€M SIGAPL Quote Quad8(2):242—
247, December 1987.

[MM83] J. Martin and C. McClureSoftware Maintenance: The Problem and Its Solutiédtyentice-Hall,
1983.

[Pee84] Howard A. Peelle. Representing Rubik’s cube in ARCM SIGAPL Quote Quad4(4):255—
262, June 1984.

[STS85] STSC, IncAPL*PLUS Enhancement$985.

[Web88] Noah WebstekVebster's Ninth Collegiate Dictionaryerriam-Webster Inc, Springfield, Mass.,
1988.

17

0002D0
0002D4
0002D8
0002DC
0002EO
0002E4
0002ES8
0002EA

COUNT

15000
15000
15000
15000
15000
15000
15000
15000
25000
25000
25000
260000
260000
260000
250000
15000

5800 B958
5900 AE66
4740 AA42
5900 AEGA
4720 AA42
5800 B954
1200

4780 AA42

00958
01E70
01A4C
01E74

01A4C
00954

01A4C

L RO,DVISVC

C RO,=F'4’
BL LISER22
C RO,=F'11’
BH LISER22
CISFMTX1 L RO,DVISVR
LTR RO,RO
BZ LISER22

Figure 4: SPY-ing for Code Coverage

INSTRUCTION AND COMMENTS

L5J BAL
ST
MVC
MVC
XC
BAL
LPR
ST

L5F MvVvC
LA
LCR

L5H BCTR
CLC
BH
BNE
MVC

RF,SKBL

7,ERPOS
RTXA(LQUAL),DQUAL
HCV(LHDCV),HDCV
GTXA(GDAZ-GTXA),GTXA
RF,NUM

1,1

1,N
FC(1),SBRHO+4-WS(7)
1,AFCZ

2,1

1,0

0(1,1),FC

LQPX

L5H
FCF,AFCFZ-AFCZ(1)

Figure 5: SPY-ing oMfmt

18

SPY WROTE SPYOUT DATASET AT 1989-01-21 19:00:34
Total distinct addresses executed 469

TOTAL OPS =5552816

Document= AFMT

SPY WROTE SPYOUT DATASET AT 1989-01-22 02:54:56
Total Distinct addresses executed 458

TOTAL OPS= 4323199

Document= AFMT

Figure 6: SPY-ing oMfmt

Paste R19.12 performance plot here

Figure 7: Release 19.12 Performance

19

Function

TOTAL
AFMT

SABI
FUNSCAN
SBREAL 3384237
SYNTXXA
SBDEAL
LOSYFN
DBLOWUP
SLOPTOP
XRHONOPC
BLDCONZ

Release 17.0

Total Ops

49026703
14240525
7229089
3444068
406
2190024
2134061
1802568
1257081
1206161
1020284
913129

Fn Calls Ops/Call

15 949368
1531 4721
1694 2033
8335 8618659
109 20091
49288 43
1325 1360
7018 179
109651 11
18415 55
38 24029

Release 19.0
Total Ops Fn Calls Ops/Call

53612664
14243964
7241263
3444068
248
2145202
1872554
1778102
1257632
1206315
1018385
933100

Figure 8: SPY-ing for Performance

20

15 949597

1531 4729
1694 2033
34752
109 19680
48748 38
2671 665
7005 179
109665 11
18380 55
38 24555

