
Profiling, Performance, and Perfection�

Robert Bernecky
Snake Island Research Inc

18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9

Canada
(416) 203-0854

bernecky@acm.org

1 Introduction

A profile is “a set of data often in graphic form
portraying the significant features of something”.
[Web88] Profiles can help us to quickly understand
a person or entity better. In the development of
computer-based applications, profiles are invaluable.
They help us to understand the application – how it
works, how well it works, whether it in fact works as
we think it does, and whether it is still working the
same way it did last month.

For our purposes, profiling isthe analysis of a run-
ning computer program in order to determine its ac-
tual, rather than predicted, behavior. Profiling may
be performed manually, or automatically, with the
aid of hardware or software. The data collected by
a profiling activity depends on the type of analysis to
be performed, but typically will allow determination
of instruction mix, storage reference patterns, and in-
struction reference patterns.

This tutorial presents several tools for profiling
of APL and non-APL languages and discusses their
utility in improving the quality and performance of

�This paper was originally published in the ACM SIGAPL
APL89 Session Tutorials. [Ber89]

applications. As well, several case studies are pre-
sented, which are intended to provide some insight
into how profiling tools might profitably be used in
your own work.

2 The Benefits of Profiling

Profiling is beneficial to the software developer in a
number of ways, including:

� locating performance hot spots

� predicting performance of new applications

� performing long-term performance monitoring

� as an aid in performing quality assurance

Let’s look at each of them in turn.

3 Locating Performance Hot Spots

One of the most common, and most beneficial, uses
of profiling is to determine how an application’s per-
formance might be significantly improved with rela-
tively little effort. In its crudest form, this might be

1



done by a frustrated user who complains to an appli-
cation designer that the application is “taking a long
time to run.” The designer interrupts the application
and observes that the interruption occurred at linex
of verb y. If the situation recurs, and the interrup-
tion is always at linex of verby, the designer might
get the idea that linex has some characteristic which
makes it execute slowly. This may lead to an ex-
amination of that line, and a rewrite of it, intended
to produce an improvement in the application’s per-
formance.

Another industry favorite is the “honcho” or
“guru” approach to performance improvements. In
this case, the user approaches the application de-
signer (the honcho) with a problem. The honcho
makes an immediate guess as to the cause of the
problem, then runs off and rewrites some hunk of
code, believing that this will fix everything. Of
course, without some research into the problem, the
honcho is working on the basis of guesswork or
hunches, and may in fact be working in a totally un-
productive area. Perhaps “huncho” is a better term
for this mode of dealing with performance problems.

One problem with both these approaches is that
they are not quantitative. In neither case does the de-
signer have anything concrete to say about perform-
ance, other than that complaints have ceased. There
is no assurance that things have not, in fact, gotten
worse in some other area. There is also no quantita-
tive statement that can be made about the extent of
the claimed improvement.

These haphazard approaches can be replaced by
one in which the hardware or application is instru-
mented to provide information about what the appli-
cation is doing. In the case where no pre-existing
tools can assist in this instrumentation, the applica-
tion writer must insert code to collect that informa-
tion. For example, each user-defined verb might have
code added to it which writes a record to a file each
time a specific line of the verb is executed. Assume

the record contained the time of day, CPU time used
thus far, and the verb name and line number. Once
the application was then run to gather this informa-
tion, a post-processor could analyze it to determine:

� which user-defined verbs were executed

� which lines of each verb were executed

� how many times each line of each verb was ex-
ecuted

� how much CPU time each user-defined verb
consumed

� how much CPU time each line of each verb con-
sumed

If this data were to be sorted by CPU time, it
would give an ordered list of where the largest
gains in performance might be made. A commonly
accepted rule in computing, known variously as
Pareto’s rule or the 80/20 rule, is that 80% of the pro-
cessing of an application occurs in 20% of the code.
Assuming this rule holds, the list obtained above will
become uninteresting after the first few entries – im-
provements made to code which is executed rarely
or not at all will not make a measurable difference in
performance.

Software-based profiling has a number of flaws:

Inaccuracy The ability to exit from a verb in mid-
line, rather than by falling out of the bottom of
the verb, can cause data to be lost or to be mis-
leading.

Heisenberg effectsThe time required to sample
clocks, write data to file, and so on may inter-
fere substantially with the operation of the ap-
plication. In the case of real-time applications
which must react to external stimuli at rapid
intervals, the measurements may be skewed to

2



the point of meaninglessness. By the time one
event completes, including time spent monitor-
ing it, it is time to deal with the event again.
This is similar to the Uncertainty Principle de-
scribed by the physicist Heisenberg: it is not
possible to measure something without altering
its behavior in some way.

Introduction of errors The act of altering the ap-
plication in order to instrument it is liable to
introduce errors into the application. The er-
rors may be due to incorrect installation of the
monitoring code, or to assumptions made in the
original application, which render it sensitive to
certain types of modifications. Use of absolute
line numbers is an obvious form of a poor pro-
gramming practice which could lead to failures
of this type. The real problem with application
alteration is that it constitutes a form of main-
tenance. The probability of getting a mainte-
nance change correct on the first try has been
measured at roughly 50% if fewer than 10 lines
of code are changed, and much less as the vol-
ume of the change grows. [MM83]

Performance The overhead of the instrumentation
software may be unacceptably high. If monitor-
ing a critical transaction-based system causes
the transaction time to rise from .5 seconds to
10 seconds, then software-based profiling may
be unacceptable. This is an extreme form of the
Heisenberg effect.

Although these flaws cannot be totally removed,
they can be managed by providing hardware or soft-
ware assistance. These will be discussed in a later
section.

4 Performance Prediction

When designing new applications, it is often impor-
tant to be able to predict how well they will perform
as the size of the problem or associated databases
grow. A profiler can assist in this process. As an ex-
ample, consider an application in which news stories
from a wire service are archived in a data base, to be
accessed by users who would use full text searching.
The user might make the following query: “Show
me all stories containing the phrase ‘cold nuclear fu-
sion’, but not the word ‘palladium’.” Assuming the
database will continually grow in size as more arti-
cles are added to it, it is critical that the time taken to
perform such a search grow no worse than linearly
with the size of the data base. In fact, one would
attempt to design it so the search time grows sublin-
early or not at all.

Assume that the application exists, and we wish
to ensure that we have achieved our goal. To this
end, we make repeated runs of the application un-
der control of a profiler, with a number of grow-
ing databases. We then plot the CPU time used in
each line against the database sizes. Any non-linear
growth will be obvious, to be attended to before
it reaches crisis proportions. In a related fashion,
changes that improve performance will be quite vis-
ible as a reduction in the slope of the lines.

Profilers can also be of use in predicting perform-
ance during the course of program development:
a colleague, Karl Dawson, implementedebar, an
array-searching primitive verb, for SHARP APL, by
first modelling it in APL. He then used a SHARP
APL profiling facility, Ìfm, in conjunction with the
APL model, to predict actual interpreter perform-
ance. This methodology allowed him to create com-
plete test scripts before any actual code had been
written, and gave considerable insight into the value
of several proposed special cases for the primitive.

3



5 Long-term Performance Monitor-
ing

Performance monitoring of a running application is
often abandoned, on the assumption that it’s working
perfectly, until the day when the users come scream-
ing thatyour application is running so slow that it is
unusable, and that they are going to:

� take you to court

� not pay their bill

� demand a refund

� go to your most unfavorite competitor

� all of the above

On that day, management is likely to suggest that a
quick fix of some sort be cobbled togetherright now.
This will usually result in code changes which end up
being too expensive, poorly designed, a maintenance
nightmare, and inadequate except as a temporary cir-
cumvention. Significant effort will be required later,
not only to correct the original problem, but to undo
the quick fix.

An automated monitor in place on such a crit-
ical application could call attention to a mount-
ing problem long before it reaches crisis propor-
tions. The problem could then be addressed in a
cool and collected fashion, without earning the ire of
the users, and without developers developing ulcers
from working 24-hour days.

An automated monitor could execute typical trans-
actions at regular intervals under the control of a pro-
filer, recording the profiler results for each transac-
tion. Another task would periodically analyze the
profiler information and send an electronic mail-
box message or other alarm to appropriate parties
if elapsed or CPU times began to edge up to unac-
ceptable levels. It’s advisable to both log and plot

profiles, for at least two reasons. First of all, the vi-
sual nature of a plot will make performance trends
stand out clearly. Second, if for some reason the pro-
filer, logger, or plotter ceases to work, you’ll find out
about it sooner. There is nothing more frustrating
than going to a log file to look for historical data that
will pinpoint a problem, and discovering that no data
has been collected for six months because the log file
was full.

A profiler should allow information to be collected
easily without altering the application. This encour-
ages its use in conjunction with the actual production
code, rather than with a modified version that may
not reflect reality. In addition, developers are more
likely to make use of profilers if they are extremely
easy and convenient to use, than if they require te-
dious planning and effort to use.

Data collection at the line by line level allows
early detection of potential bottlenecks before they
are visible in the aggregate of total CPU or elapsed
time. For example, in a transaction which takes ten
seconds, the time required to hold a file to prevent
concurrent updates might only take a tenth of a sec-
ond. Normal variations in aggregate execution time
might be more than a second. If the time to per-
form the hold started to grow exponentially, it might
have to increase by almost a second before a human
would notice, at which time it might be too late to
take thoughtful corrective action. Analysis of de-
tailed information of this sort can provide valuable
early warningswhich make everyone’s life easier.
The idea is to be able topredict changes in usage
patterns, and changes in load patterns before they
become crises, by watching for non-linear growth
trends.

Profiling activities shouldn’t be restricted to ob-
servations of processor time only. Elapsed time vari-
ations can be very enlightening. By showing where
real-time system delays are occurring, they can high-
light problems in such areas as file system I/O queue-

4



ing, shared variable processor or other communica-
tion bottlenecks, and locking delays on files or other
serialized resources.

Finally, if a real problem surfaces, and no his-
torical information is available to support analysis,
the power of profiling tools as dynamically alter-
able instrumentation can help to pinpoint the hot spot
quickly and precisely.

6 Quality Assurance Tools

There is no practical way to prove that a computer
program will function correctly. The best we can do
today is to employ the best designers and program-
mers we can find, prototype our designs, ensure that
designs and code are meticulously vetted by inde-
pendent, objective judges, and perform quality as-
surance tests as a verification step, to further support
our belief that the application works correctly.

In the past, courts have been rather lenient on the
computing industry as a whole, probably because of
the infancy of the profession. However, as the indus-
try matures, it will have to accept a larger measure of
responsibility for errors caused by computer-based
applications. If a bridge collapses, the engineers who
designed it are probably in very hot water. Similarly,
if a fault in a computer program causes death, injury,
or significant financial loss, and the vendors of that
program cannot show that they took all reasonable
efforts to ensure the correctness of that program, then
the vendors, and perhaps the designers themselves,
are in line for civil and perhaps criminal action.

Performing quality assurance procedures on com-
puter programs pays handsome divdends. It is well
known that the cost of repairing a fault in a program
increases by orders of magnitude as the implemen-
tation proceeds. An error discovered in the design
phase is relatively inexpensive to remedy. An er-
ror discovered during development costs perhaps ten

times that much to correct. [Boe74, Bro74]. An er-
ror found after product shipment is extremely expen-
sive – customers get upset, andn copies of software,
rather than one, have to be repaired. This of course
offers opportunities for new problems to creep in –
fix not applied, fix applied incorrectly, and so on.

Given these changing times, it behooves software
vendors to take whatever steps are required to en-
sure that their products are as predictable as possible.
Profiling can help this process in two ways: It serves
as a mechanism to support claims about product re-
liability, and it ensures that performance claims will
be met now and in the future.

7 Test Suites

Test suites are scripts written by software develop-
ers to support their claims that their programs in fact
operate as designed. However, software develop-
ers are Panglossian by nature, and rarely exhibit an
appropriate degree of skepticism about the reliabil-
ity of their products. Casually designed test suites,
therefore, may in fact deal with only those areas of a
program about which the developer was concerned,
and ignore large areas which “couldn’t possibly have
bugs in them.”

A profiler can be a valuable tool in assisting soft-
ware developers to remove the blinders from their
eyes. They are secure in their knowledge that their
code is bulletproof, secure in their knowledge that
their test suites are a complete test of their code.
Now, introduce a profiler, and ask no more than that
the developer prove, rather than claim, S0 coverage;
that is, mere execution of all instructions in the pro-
gram.

The results are eye-opening: Test suites rarely
cover all the code. Developers are often at first puz-
zled by this revelation. Next, they take steps to cor-
rect the problem, and rewrite the suites to cover the

5



missing areas. When they see the results, they be-
come converts.

Developers often consider formal test suites to be
a waste of (their) time, because “It’s going to bring
my development work to a halt! We’ll never deliver
on time!” Also, they are often offended by their man-
ager even suggesting that they write test suites, con-
sidering this to be an attack on their competence. It
is difficult to sell them on the idea. In my experience
with a large development group, the only effective
approach has been: “Just try it this once, and see
how you like it, ok?” Once developers realize how
their code quality has improved, they buy in readily.
People like to do the best job they can; they’ll use
tools if they see a real benefit in doing so.

Besides serving as obstacle courses for system al-
terations, test suires also provide a handy benchmark
for performance analysis purposes. If your new, im-
proved system survives the obstacle course, but takes
twice as long (or even 5% longer!) to run it, are you
likely to knowingly unleash it on an unsuspecting
public?

Finally, complete test suites allow those poor souls
who are responsible for product support to have
some faith that a new product may in fact work as
advertised or better. The ability to rigorously test
a system you’re going to end up supporting, rather
than taking a developer’s word on its robustness and
correctness, offers some peace of mind.

Suitably written test suites allow obstacle courses
and performance measurements to be automated, re-
ducing the human effort required to support an oth-
erwise labor-intensive activity. Such tests can be
run before and after each system change is released,
to nip problems in the bud. Chasing performance
problems months or years after they were introduced
into a system is extremely difficult – old code sim-
ply stops working, due to lack of storage space for
backup copies, incompatible operating system up-
grades, and other such mundane but all too real con-

cerns.

8 A Few Profilers

A number of profilers of various degrees of sophisti-
cation and convenience are available for most com-
puting languages and systems on the market today.
What follows here is not a survey. Rather, it is in-
tended to describe a few of the capabilities and limi-
tations of several profiling tools (and facilities which
have been bent into profiling tools) that we at I.P.
Sharp Associates have used for our own work.

9 Profiler Environments

Profilers perform their work within a specific com-
puting environment. In APL, they are associated
with a specific APL task and application under the
control of one user. The tool provided with MVS (an
IBM operating system for large computer systems)
is usually associated with a specificaddress space,
which might represent an entire collection of users.
In VM (another IBM large system environment), it
is associated with avirtual machine, which may rep-
resent either one or many APL users.

The APL-based tools are oriented toward APL ap-
plication writers, and have all those characteristics
that APL users expect and enjoy: ease of use and
human-comprehensible results.

The operating system-based tools tend to be ori-
ented toward assembler code programmers, and have
all those characteristics that their audience has grown
to expect. They’re not exactly suited to the job, but
with enough effort, you can bend them to work. Sort
of. . . more on this later.

6



10 APL Profiling Tools

SHARP APL’s Function Monitor,Ìfm, provides
the following information for any user-defined verb
which it monitors: [I.P87]

Line counts provide information on how often each
line in the verb was executed.

Elapsed and processor timeis supplied for each
line, including and excluding time spent in
verbs invoked from that line.

Configurable design gives you control over which
verbs are to be monitored, and can control the
level of detail of information to be collected –
summary information of one line per verb, or
highly detailed information on a line by line ba-
sis. The design is flexible enough to allow easy
and consistent extension in the future to support
new monitoring capabilities.

Timings are precise to the level of the underlying
system processor timer, typically within a mi-
crosecond. You don’t have to run benchmarks
for long periods of time to get meaningful re-
sults.

Monitored information is correct whenever it is
sampled, even within recursive, pendent, or sus-
pended verbs.

The power ofÌfm became obvious to develop-
ers here on the day it was released on our internal
SHARP APL system. The elapsed time from the
point when the VIEWPOINT development team ob-
tained theÌfm documentation until they had used
Ìfm to obtain a 25% CPU time reduction in the
VIEWPOINT Report Writer wasthreehours!

STSC offersÌMF, a Monitoring Facility for their
APL systems. [STS85]ÌMF provides a subset of the
services provided byÌfm.

IBM offers a performance monitoring tool with
APL2 called TIME. [IBM87] As of the publication
deadline for this tutorial, I was unable to find any
documentation describing its precision or ability to
handle recursion.

11 Operating System Profiling
Tools

IBM provides VM TRACE for VM, and SLIP/GTF
for MVS. SLIP is a generalized tool which IBM of-
ten uses as a problem determination aid; i.e., “When
does my program get to instructionx?” When pro-
filing, the question more often asked is: “When does
my program get to instructionsx+Én?” The Gener-
alized Trace Facility (GTF) is used in conjunction
with SLIP to intercept and process the events gener-
ated by SLIP.

One way SLIP/GTF can be used to perform pro-
filing is as follows: The user configures SLIP to in-
terrupt the executing program whenever an instruc-
tion of interest is executed. SLIP does this by con-
ditioning the underlying S/370 PER (Program Event
Recording) hardware to perform that task.

When a PER interrupt occurs, GTF processes it,
takes some action, and returns control to the exe-
cuting program. In spite of its name, GTF’s capa-
bilities in this regard are quite limited, and about
the only practical action which can be taken for in-
struction tracing is apparently to ask GTF to write a
trace record to disk or tape for each instruction inter-
cepted.

For any realistic profiling work, VM TRACE and
SLIP/GTF are inadequate. To see why, consider a
real example chosen from the I.P. Sharp archives.

A performance problem had been reported in the
SHARP APL newly released R19.0 interpreter: A
user claimed a specific application ran slower than it
did in the previous release. In the course of studying

7



the problem, I had gotten to the point where it was
clear that a problem existed, but I had been unable to
determine what change in software was responsible
for the problem. A search of our software change
log, SOFTLOG, showed that hundreds of software
changes had been made to the interpreter since the
earlier release and that factoring out the changes by
backing off each set of interdependent changes and
running the affected application was simply imprac-
tical.

We decided that an instruction trace of the appli-
cation running on the two software releases might
provide enlightenment. The tool closest to hand was
VM TRACE, so we started with it.

VM TRACE was designed as an aid for program-
mers, to let them step through programs and display
the result of executing each instruction on a terminal
or to write a line on the “vm print spool queue,” tra-
ditionally used as the repository for data destined for
a physical printer. Given a suitable amount of mon-
keying around, it is possible (not convenient, but pos-
sible) to capture this printer file data and copy it to a
normal file where it can be analyzed by a program.

Knowing that the application was likely to execute
lots of instructions, and being concerned about hav-
ing to analyze a large quantity of data (one record per
instruction executed!), I chose averysmall applica-
tion test, which normally ran in about ten seconds
on an IBM 3090 class processor. I started a test sys-
tem with only one user on it, configured VM TRACE
as required, and started the application. However,
there was a problem – the disk space assigned for
printer files in most shops is painfully inadequate for
the quantities of data being called for here, and when
a trace fills up that disk space, everything stops. Not
just your job, but every job in the shop which wants
to print something. It’s quite user-hostile, and not
the kind of thing which exactly endears one to the
operations staff, so we gave up on VM TRACE.

Next, we tried SLIP/GTF, which at least has the

ability to write its trace information on magnetic
tape. We restarted the application after configuring
GTF and SLIP appropriately, at which time, GTF
happily started to spin tape, writing trace records.
After a while, it started to write a second reel of tape.
Then a third. We left for dinner at this point, and re-
turned several hours later to find a mound of tapes,
a slightly disgruntled computer operations staff, and
tapes still spinning. At this point, I decided to cut my
losses and analyze what I had obtained thus far.

The results were less than encouraging for some-
one who was hoping to make practical use of instruc-
tion tracing as a way to solve all the problems known
to mankind. That particular ten-second test would
have run for about two weeks of dedicated proces-
sor time, and have written roughly 600 reels of tape,
or 120 gigabytes of trace information! The war sto-
ries and jokes which arose from this event led, in a
day or so, to the design and development of SPY by
Leigh Clayton, as a result of a suggestion from Kirk
Iverson.

The basic problem with the IBM-provided tools is
that they were not really designed for the kind of use
to which we were putting them. They were designed
to be used with events which occur infrequently –
once per minute or hour – instead of at megahertz
frequencies. The PER hardware was doing its job
quite well, but the operating system supports for that
hardware were simply inadequate. However, I.P.
Sharp was, and is, a society of toolmakers. When
we find available tools lacking, we build new ones to
meet our needs.

In 1974, I created a “PSW Sampler” as a way to
do statistical profiling. Similar in spirit to hitting
“break” on a running application periodically “to see
how it’s doing,” the PSW Sampler used timer de-
lays to interrupt the running APL system and build
a histogram of PSW values encountered in APL at
those times. In the S/370, the PSW (Program Sta-
tus Word) is akin to )SI in APL: It tells you what

8



program is executing, and where it was when you in-
terrupted it. Using the PSW Sampler, we determined
that syntax analysis in APL consumed 10% to 15%
of the processor time associated with most applica-
tions, with storage management functions running a
close second. The problems with the PSW Sampler
grew out of its statistical nature. It gave a fairly good
gross picture of the system, but wasn’t reproducible,
couldn’t perform total code coverage, and was un-
able to monitor certain parts of the system, such as
serialized code. Because of this, the PSW Sampler
got dusty, and stopped working around the time we
switched from SHARP DOS to MVS. But it wasn’t
really missed until Leigh recalled the PSW Sam-
pler’s technique of using a histogram, rather than
writing data to a file. Realizing that this approach
could be used with SLIP to efficiently achieve most
of our requirements, Leigh designed and wrote SPY.

SPY runs in conjunction with SLIP, intercepting
the PER interrupts and processing them itself, to
build a storage-resident histogram of instruction exe-
cution. The requirement specifications for SPY were
that it minimize the number of instructions required
to trace a single instruction, that it not perform I/O
while tracing, and that it produce a histogram, rather
than a history trace, to minimize post-processing re-
quirements.

SPY is a hybrid system, written partly in S/370
Assembler code, to handle the sensitive PER inter-
rupts, and partly in SHARP APL, to provide back-
end analysis capabilities such as instruction count
summaries, instruction count detail reports, and code
coverage reports. The use of APL also offers signifi-
cant flexibility and convenience in modifying and ex-
tending SPY’s capabilities. For example, it was triv-
ial to extend SPY to include reporting to the assem-
bler code label level, once we obtained documenta-
tion from IBM on the format of AUTOTEST output.

1

SPY has been a wild success from day zero. It
allowed us to gather the precise statistics we re-
quired in a few minutes, rather than weeks, and the
post-processing task requires only seconds to pro-
cess roughly a megabyte of data, instead of hundreds
of gigabytes. Thanks to Leigh’s expertise, SPY’s
overhead is quite low – a factor of about 30 slow-
down instead of thousands. This allows it to be used
for high-volume event tracing, and to be realistically
used to monitor real applications.

According to Leigh, SPY doesn’t stand for any-
thing beyond its obvious cloak-and=dagger denota-
tion. I prefer to think of it as the Sharp Performance
Yardstick, but who am I to dispute the meaning of a
name? Juliet?

12 Case Study - Storage Manager

The performance problem mentioned earlier is a
prime example of how suitable instrumentation al-
lows rapid focusing on the true, rather than suspected
cause of a problem. In software of any complexity,
a long-standing performance problem that cannot be
attributed to any specific change to the system is hard
to track down. Queries to involved developers of the
form “Do you recallany changes you made which
have even the most remote possibility of causing the
problems we’re seeing?” result in a “No flies on me,
mate!” response from all of them: theyknow their
code works perfectly – the problem must be some-
one else’s. There is no way to assess which area is
at fault except by backing off changes one at a time

1AUTOTEST is a capability of the IBM S/370 Assembler,
which was introduced in the mid-60’s as a debugging aid, but
which has not been supported on any recent operating system
offered by IBM. It took a fair bit of hunting to locate anyone
who knew anything about AUTOTEST, but Dave Kerr of IBM
Toronto finally came through for us.

9



until you find the offending one. In a complex sys-
tem, where changes often interact, this is a problem
of Gordian-Knot complexity, and is simply impossi-
ble to solve.

SPY allowed us to nail the interpreter performance
problem in a few hours – we had been chasing the
problem unsuccessfully for more than a week.

We obtained a copy of the application that the user
claimed ran degraded under the new release. Then,
with the help of Karen Brant and Gary Wride, both
of whom were then members of the Software Co-
ordination Team, we ran the application under both
releases. Our measurements substantiated the user’s
claim of degraded performance.

This step was required because the application it-
self had been substantially rearchitected in the inter-
val, and we wished to make sure the problem was
really there, as described. We then reran the appli-
cation under SPY with both releases of the system,
to determine where the discrepancy in performance
was coming from.

The results were eye-opening. Within an hour, we
determined that a change to the storage manager had
introduced a fault which rarely affected applications,
but when it did, the effect was dramatic. Figure 17
gives a comparison of the first few lines of output
from both runs. Let’s do some quick analysis of these
results. “TOTAL” is the count of actual relevant in-
structions executed. It is quite clear that an unde-
sirable change has occurred in this test – 49 million
versus 53 million instructions – degradation of more
than 10%.

A look at the more detailed information below
shows that AFMT is clearly the heavy user of cy-
cles on this job, weighing in at 14.24 million instruc-
tions. Since both counts are within a tenth of a per-
cent of each other, we know that AFMT is not our
problem. Ditto for SABI and FUNSCAN. But what
about SBREAL? It went from 3.3 million to 8.3 mil-
lion instructions, clearly a change we didn’t expect,

in spite of the fact that other system changes resulted
in many fewer calls to it (248 versus 406). This made
it abundantly clear that our problem lay in SBREAL.

A detailed instruction trace in SBREAL showed
an obvious fault. The fault was quickly corrected,
and the system tested again. Results were gratifying.
Not only did the application run faster now than in
R17.0, but weprovedthat we had resolved the prob-
lem by direct, quantifiable comparison of instruction
counts on a function by function basis. The instruc-
tion count for SBREAL dropped to 2.8 million, in
line with the author’s expectations, which were that
SBREAL in R19.0 should cost less than it did in
R17.0.

In the next months, we used SPY extensively on a
number of benchmarks of our own, and on a num-
ber of benchmarks supplied by OEM and inhouse
SHARP APL sites, with the intent of improving
SHARP APL performance so that all benchmarks
would perform significantly better than before. This
effort paid off handsomely, as Figure 17 shows. Re-
lease 19.12 of SHARP APL offered substantially im-
proved total CPU time reductions for a wide range of
applications, all achieved in a short period of time.
With SPY, we rapidly located hot spots in the system
brought on by a number of very different applica-
tions, and quickly cool them off.

13 Case Study - Formatter

I was able, in the course of a few hours, to improve
the performance ofÌfmt, at a time when that wasn’t
even my prime concern. I had made some rather triv-
ial changes to the formatter, and was writing an S0
coverage test suite for it. S0 coverage is by no means
a complete test, but it has a well-deserved reputation
for exposing code faults. In the course of writing
the suite, I stumbled onto a program fault which had
been in the code, undetected, for eleven years. After

10



fixing this, I ran my completed suite under SPY.
Figure 17 shows a fragment of the result of “SPY-

ing” in order to achieve S0 code coverage. An APL
function called COVER analyzes a SPY histogram,
an assembler code listing, and a load module, to pro-
duce a report highlighting the lines of code which
were not executed during a particular test suite. The
missed lines are indicated by question marks.

The version of COVER described here annotates
the entire assembler code listing. A variant of
COVER, which I find more convenient to use, pro-
duces only the non-covered lines as its output. When
the output is an empty array, you’re done. This
empty array is no joke!

It is often enlightening to browse through code
coverage results in detail, as potential bottlenecks,
obvious bugs, or shortcomings may come to light.
The fragment of code in Figure 17 is taken from an
old version ofÌfmt. I have annotated the listing
by replacing the assembler-generated code with the
instruction counts which resulted from executing a
simple format expression on a 5000-element array.

In Figure 17, it is obvious that the four lines start-
ing at L5H are being executed far more often than
any other in the code fragment. In fact, several min-
utes of analysis showed that the loop performed by
those lines could be replaced with non-looping code
which indexed a table. An hour of coding and testing
produced a significant speedup of the entire format-
ter.

Although the above example shows inline code,
I usually sort the report by instruction counts, to
quickly highlight the large CPU burners (a la Pareto.)

Reports of the above nature are valuable when de-
veloping code. If I believe that a specific piece of
code should be executedn times per data element,
then I will be able to predict what the report contents
should be when executed with a specific test suite,
and thus verify that things are working as expected.
Deviations from the expectations are cause for alarm

and careful analysis to resolve the differences.
S0 coverage also turned up some unreachable

code, which proved to be faulty search loops. I was
able to replace these by one line of inline code – the
fastest line of code is the one that isn’t there. It’s also
the one that fails the least!

On the performance front, it is often handy to
be able to obtain real instruction counts when com-
paring two versions of a component, because the
amount of other changes involved (other develop-
ment work, operating system upgrades, faster pro-
cessors) may be such that it is impossible to obtain
meaningful measurements otherwise. It also offers
a way for developers to quantify their improvements
beyond vague measures of CPU time. Figure 17 con-
tains excerpts from the APL function SPYSUMM
executed against two versions ofÌfmt, before and
after the changes described earlier.

Several items are worth noting here: First, we
timestamp all data sets, so that we have a way of
ensuring that we are in fact analyzing the correct
data. In a large development shop with many op-
erating systems running at once, it is easy to get con-
fused and analyze old data or someone else’s data
by mistake. Second, note that the number of dis-
tinct instructions executed has decreased slightly. If
I had not made changes that would lead me to ex-
pect a discrepancy of that sort, I would go back and
look more closely, to see what else had unexpectedly
changed, perchance to turn up a bug. Finally, the
most interesting part: the relative instruction counts
of 5.5 million against 4.3 million show a clear per-
formance improvement of 22%. Not bad for a few
hours’ work!

A lesson to be learned here is that although any-
body could have looked at that code and immedi-
ately seen how bad it was, nobody had done so. (I
feel compelled to point out that the formatter code in
question here was not written by an I.P. Sharp em-
ployee).

11



A benefit of profiling is that it directs your atten-
tion to the root of a problem immediately and force-
fully. The importance of this cannot be overstated.
In theÌfmt study, changing 10 lines out of 200,000
made a significant improvement in performance. The
television repair technician who charged 50 dollars
for two minutes’ work to replace a tube (this is an old
story) said “That’s 1 dollar for the tube and 49 dol-
lars for knowing which one to change.” It’s the same
with performance improvements: you have to know
where to look, and profilers are a very inexpensive
way to learn where to look.

14 Case Study - Cross Sums

Although supercomputer applications such as com-
putational fluid dynamics, ray tracing, and petroleum
exploration are getting a lot of press lately, other ma-
jor computing challenges are worthy of our attention.
Some of these Everests, including Conway’s Game
of Life, New Eleusis, and Rubik’s cube, have been
addressed in the literature, but others have inexplica-
bly remained unchallenged. [Ber81, Dub71, McD87,
Pee84] One such problem is Cross-Sums.

Cross-Sums resemble crossword puzzles, except
that:

� the words are integers

� the clues are the sum of the digits in the word

� no word contains a zero

� no word contains duplicate digits

Cross-Sums puzzles can be found in almost any
Crossword Puzzle magazine.

Since duplicates and zeros are forbidden, a
Boolean dictionary of valid words for Cross-Sums
is:

bdû(9Ò2)Îê1 0É2*9

The set of×-digit words summing toÁ is:
((Á=bd+.«É9)^×=+/bd)¯bd

One heuristic in Cross-Sums is determining the
set of digits which may validly occur in a partic-
ular square. And-ing vertical and horizontal sets,
using^ê1 and inner product, eliminates impossi-
ble choices. Process of elimination is the key. For
many puzzles, this suffices. For harder ones, recur-
sion based on guesswork is called for.

In order that data entry for the puzzle should be
simple – many puzzles are harder to type in than they
are to solve – I chose complex numbers as an obvious
(to me) way to enter values. (It turns out there is a
much simpler method, but I won’t discuss that one.)

My function solved most puzzles adequately, but
it was slow. I decided to apply profiling withÌfm
to determine where the time was going. I used the
crude APL functions shown in Figure 1.

Let’s apply these to the Cross-Sums program on
a typical puzzle. Since we don’t know anything, we
start by monitoring everything:
setall þ Ýcs 'n1' þ getall
30 1315808 adjust
2 460844 fillh
1 106521 cs
116 88739 white
15 26492 hnum
15 26334 vnum

The first column is the number of times the verb
in the third column was invoked. The second col-
umn is the number of CPU microseconds used in
the verb. Clearly,adjust is the major eater of re-
sources here. Taking a closer look at it, by monitor-
ing just that one verb in detail, we see:2

setfn'adjust'
cs'n1' þ getfn'adjust'

2The brackets surrounding the line numbers have been elided
to make the examples fit in a two-column display format for
publication.

12



244 74888928 lû(sums=s[i;¢1+''Òj])¯seqs
244 14142933 ib[;i;j]ûib[;i;j]^ê1 0 ©¯l
244 6220832 lû((+/m)=l+.^m)¯l

Again, the first column is the number of calls, and
the second is processor time used. The third column
is, of course, the text itself. The first line, which is
the largest consumer, is puzzling (no pun intended) –
it is fairly simple APL, and not the sort of thing one
would expect to cause problems. Here is another les-
son of profiling: Bottlenecks occur where they will,
not where you expect.

Decomposing line 28 into two lines, to determine
which part of the line is the offending one, yields the
following output fromgetfn:

244 707791 29 lûsums=l
244 144244 36 ib[;i;j]ûib[i;j]^ê1 0©¯l
244 62117 35 lû((+/m)=l+.^m)¯l

Since the rest of the old line 28 doesn’t even ap-
pear, it’s clear that the problem lies in the=. But how
can this be, since equality is such a simple function?
Maybe it has something to do with data types? In
fact, when we look closer, we see thatl is a com-
plex array, andsums is an integer array. I forgot
to convert the complex input data to integers during
setup. Now, modify things to ensure everything is
integer, and try again, from the top:

setall þ Ýcs 'n1' þ getall
30 658678 adjust
2 461912 fillh
1 102782 cs

116 88496 white
15 26688 hnum
15 26672 vnum

That’s better – we chopped the cost ofadjust in
half! It turns out that there are other complex number
problems still lurking about infill andfillh,
but we’ll correct those behind the scenes. Going after

other game, we pick onadjust again. It’s still the
major CPU user, and hence is the area we can still
probably squeeze the hardest. Thegetfn results
are shown in Figure 2.

The problem here is that this release of the sys-
tem didn’t special caseÁ^êk ×, but ran it through a
general adverb support facility. The proper solution
to this problem is to lean on the software vendor, but
maybe we can do something quicker. If we just re-
shape the arguments so they match, we get the results
shown in Figure 3.

Not bad – we knocked that one down a fair bit
as well. How did we do? Well, final comparisons
showed a reduction in processor time from 212177 to
80692 – a factor of 2.6 improvement in about a half
hour of analysis and programming time. This sort
of improvement is typical for small applications, but
larger applications will take more time for changes
of this magnitude – 10% of a large amount of code
is still a large amount of code, and the time spent in
analysis, planning, measuring, and actually changing
code will be proportionately larger.

15 Perilous Pitfalls of Profiling

Profiling is not without its pitfalls. The Heisenberg
interactions of almost any profiler can produce mis-
leading results. For example:

Storage required for profiler history information
can alter the behavior of a system. In APL with
Ìfm, this might manifest itself as either WS
FULL or degraded performance.

Real-time systemsmay exhibit extreme sensitivity
to performance degradations caused by profil-
ers. In the case of some tests I have run on a
time-sharing APL scheduler, the profiler over-
head was such that the test wouldnevercom-

13



plete, because the timer-event-driven scheduler
kept getting further and further behind in time.

Validation – When using profilers to gain confi-
dence about the validity of test suites, it is im-
portant not to treat profiler results as a panacea.
Test suite results must be verified to assert that
the program is producing correct results as well.
This may seem obvious, but it is something that
is often overlooked by suite authors. Regression
tests should be added to test suites, to ensure
that program faults which were not picked up
by extant test suites have in fact been repaired,
andstayrepaired.

Wait – Don’t use profilers to improve performance
until after ensuring that you have a proper de-
sign. Tolerating poor design on the assump-
tion you can profile your way out of any per-
formance problems which occur is naive and
shortsighted. As a good example, a lot of the
code we optimized in the Cross-Sums example
is wasted effort: that code is continually recom-
puting numbers which could be computed once,
during initialization, if a slightly different de-
sign was chosen. Instead of making it run faster,
we should instead haveremovedit – the fastest
code is the code that isn’t there!

16 Summary

� Profilers can assist in making dramatic perform-
ance improvements in applications.

� Performance problems occur where they will,
not where you think.

� Use profilers, logging, and plots to monitor crit-
ical applications over time, to predict problems
before they become crises.

� Use profilers as one more element of your Qual-
ity Assurance toolkit.

Now, go forth and multiply your productivity with
profilers!

17 Acknowledgements

The tools and techniques described in this tutorial
represent the research and development efforts of a
number of APL professionals once known collec-
tively as the APL Systems Development Department
of I.P. Sharp Associates Limited. Without their ideas
and devotion to excellence, this tutorial could not ex-
ist. I am further indebted to Elena Anzalone for her
meticulous assistance in editing this tutorial.

14



Ç setall
[1] Ý1 Ìfm Ìnl 3
Ç

Ç rûgetall
[1] rûÌnl 3
[2] rû(Ä(2Ùê1Û¢1 Ìfm r)«ê1Û 1 1e6)Ør
[3] rûîsrtc r
Ç

Ç setfn ×
[1] Ý63 Ìfm ×
Ç

Ç rûgetfn ×
[1] rûÄ 1 1e6«ê1Û2Ùê1Û¢62 Ìfm ×
[2] ×û' ',(50-¢1ÙÒr)Ùê1 Ìcr ×
[3] rûrØ('[55]'î¬(-Ìio)+É1ÙÒr),×
[4] rûîsrtc r
Ç
Ç rûsrtc ×;i;Ìio;b
[1] Ìioû0
[2] iûçbû,0 1Õ>×[0]
[3] bû(b[i]¨0)/i
[4] bû(6ÄÒb)Òb
[5] rû(>×[0])[b;]Ø(>×[1])[b;]
Ç

Figure 1: Simple APL profiling functions

244 136209 33 ib[;i;j]ûib[;i;j]^ê1 0 ©¯l
244 95867 28 lû(sums=s[i;¢1+''Òj])¯seqs
244 61620 32 lû((+/m)=l+.^m)¯l

Figure 2: AND-rank-k profiling details

15



244 96285 28 lû(sums=s[i;¢1+''Òj])¯seqs
244 81575 33 mûib[;i;j] þ ib[;;j]ûm^ô(÷Òm)Ò©¯l
244 61878 32 lû((+/m)=l+.^m)¯l

Figure 3: Reshape profiling details

16



References

[Ber81] Michael J.A. Berry. APL and the search for truth: a set of functions to play new eleusis.ACM
SIGAPL Quote Quad, 12(1):47–53, September 1981.

[Ber89] Robert Bernecky. Profiling, performance, and perfection. InACM SIGAPL APL89 Session Tuto-
rials. ACM SIGAPL, August 1989. ISBN 0-89791-331-0.

[Boe74] B.W. Boehm. Software engineering.IEEE Transactions on Computers, C-25, 1974.

[Bro74] F.P. Brooks.The Mythical Man-Month: ESsays on Software Engineering. Addison-Wesley, 1974.

[Dub71] J. Duby. Algorithm 70, conway’s game ‘life’.APL Quote-Quad, 3(2–3), 1971.

[IBM87] IBM Corporation.APL2 Programming: Using the Supplied Routines, sh20-9223-1 edition, 1987.

[I.P87] I.P. Sharp Associated Limited.QuadFM: Function Monitor Facility User Guide, publication
code 0842 99-1 edition, 1987.

[McD87] Eugene E. McDonnell. LIFE: Nasty, brutish, and short.ACM SIGAPL Quote Quad, 18(2):242–
247, December 1987.

[MM83] J. Martin and C. McClure.Software Maintenance: The Problem and Its Solutions. Prentice-Hall,
1983.

[Pee84] Howard A. Peelle. Representing Rubik’s cube in APL.ACM SIGAPL Quote Quad, 14(4):255–
262, June 1984.

[STS85] STSC, Inc.APL*PLUS Enhancements, 1985.

[Web88] Noah Webster.Webster’s Ninth Collegiate Dictionary. Merriam-Webster Inc, Springfield, Mass.,
1988.

17



0002D0 5800 B958 00958 L R0,DVISVC
0002D4 5900 AE66 01E70 C R0,=F’4’
0002D8 4740 AA42 01A4C BL LISER22
0002DC 5900 AE6A 01E74 ????? C R0,=F’11’
0002E0 4720 AA42 01A4C ????? BH LISER22
0002E4 5800 B954 00954 CISFMTX1 L R0,DVISVR
0002E8 1200 LTR R0,R0
0002EA 4780 AA42 01A4C BZ LISER22

Figure 4: SPY-ing for Code Coverage

COUNT INSTRUCTION AND COMMENTS

15000 L5J BAL RF,SKBL
15000 ST 7,ERPOS
15000 MVC RTXA(LQUAL),DQUAL
15000 MVC HCV(LHDCV),HDCV
15000 XC GTXA(GDAZ-GTXA),GTXA
15000 BAL RF,NUM
15000 LPR 1,1
15000 ST 1,N
25000 L5F MVC FC(1),SBRHO+4-WS(7)
25000 LA 1,AFCZ
25000 LCR 2,1

260000 L5H BCTR 1,0
260000 CLC 0(1,1),FC
260000 BH LQPX
250000 BNE L5H
15000 MVC FCF,AFCFZ-AFCZ(1)

Figure 5: SPY-ing onÌfmt

18



SPY WROTE SPYOUT DATASET AT 1989-01-21 19:00:34
Total distinct addresses executed 469
TOTAL OPS = 5552816
Document= AFMT

SPY WROTE SPYOUT DATASET AT 1989-01-22 02:54:56
Total Distinct addresses executed 458
TOTAL OPS= 4323199
Document= AFMT

Figure 6: SPY-ing onÌfmt

Paste R19.12 performance plot here

Figure 7: Release 19.12 Performance

19



Release 17.0 Release 19.0
Function Total Ops Fn Calls Ops/Call Total Ops Fn Calls Ops/Call

TOTAL 49026703 - - 53612664 - -
AFMT 14240525 15 949368 14243964 15 949597
SABI 7229089 1531 4721 7241263 1531 4729
FUNSCAN 3444068 1694 2033 3444068 1694 2033
SBREAL 3384237 406 8335 8618659 248 34752
SYNTXXA 2190024 109 20091 2145202 109 19680
SBDEAL 2134061 49288 43 1872554 48748 38
LOSYFN 1802568 1325 1360 1778102 2671 665
DBLOWUP 1257081 7018 179 1257632 7005 179
SLOPTOP 1206161 109651 11 1206315 109665 11
XRHONOPC 1020284 18415 55 1018385 18380 55
BLDCONZ 913129 38 24029 933100 38 24555

Figure 8: SPY-ing for Performance

20


