
Abstract Expressionism for Parallel Performance
(This paper is an expanded version of that presented at ARRAY’15.)

Robert Bernecky
Snake Island Research Inc, Canada

bernecky@snakeisland.com

Sven-Bodo Scholz
Heriot-Watt University, UK

S.Scholz@hw.ac.uk

Abstract
Programming with abstract, mathematical expressions offers bene-
fits including terser programs, easier communication of algorithms,
ability to prove theorems about algorithms, increased parallelism,
and improved programming productivity. Common belief is that
higher levels of abstraction imply a larger semantic gap between
the user and computer and, therefore, typically slower execution,
whether sequential or parallel. In recent years, domain-specific lan-
guages have been shown to close this gap through sophisticated op-
timizations benefitting from domain-specific knowledge.

In this paper, we demonstrate that the semantic gap can also be
closed for non-domain-specific functional array languages, without
requiring embedding of language-specific semantic knowledge into
the compiler tool chain. We present a simple example of APL-style
SaC programs, compiled into C-code that outperform equivalent C
programs in both sequential and parallel (OpenMP) environments.

We offer insights into abstract expressionist programming, by
comparing the characteristics and performance of a numerical re-
laxation benchmark written in C99, C99 with OpenMP directives,
scheduling code, and pragmas, and in SaC, a functional array lan-
guage. We compare three algorithmic styles: if/then/else, hand-
optimized loop splitting, and an abstract, functional style whose
roots lie in APL.

We show that the SaC algorithms match or outperform serial C,
and that the hand-optimized and abstract SaC styles generate iden-
tical code, and so have identical performance. Furthermore, parallel
SaC variants also outperform the best OpenMP C variant by up to a
third, with no SaC source code modifications. Preserving an algo-
rithm’s abstract expression during optimization opens the door to
generation of radically different code for different architectures.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords parallelism, readability, expressiveness, HPC, algo-
rithms, APL, SAC, functional array languages

1. Introduction
Functional array languages, such as APL, SISAL, J, and SaC, being
designed for the computer between our ears, offer considerable ex-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARRAY’15, June 13-14, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3584-3/15/06.
http://dx.doi.org/10.1145/nnn.nnnnnnn

pressive power, compared to scalar-oriented, imperative languages,
such as C and Java. [10] Indeed, Turing Award winner Kenneth E.
Iverson, the inventor of APL, was adamant that programming is
about communication of ideas, saying what is to be done, rather
than how to do it.[15, 17] He told a parable of a parent asking a
child for assistance. The array language approach is: “Please bring
me a good apple from the basket." The imperative language ap-
proach is: “Pick an apple from the basket. If it is a good apple,
bring it to me. Otherwise, see if there is another apple in the basket,
and if so, repeat these steps until you get a good apple or run out of
apples." 1 He demonstrated the power of applying natural language
concepts to computing by summing the elements of a vector. In
APL or J, the sum is merely +/v, in which an adverb, reduce (/),
accepts a verb, add (+), as a left argument, creating a derived verb
(sum), as its result. When sum is applied to a vector, it inserts the
verb among the elements of the vector, then evaluates the resulting
expression. Contrast this with its long-winded C equivalent:

int i;

double z = 0.0;

for(i=0; i<N; i++) z = z + v[i];

APL’s terseness renders its meaning immediately obvious, whereas
the C code requires careful reading just to understand the intent of
the algorithm, and very meticulous reading to ensure that it does
not contain any subtle errors, e.g., the array having N+1, rather than
N elements.

In APL, application across the entire vector is implicit: there is
no need for an auxiliary variable, N, to be dragged along, to specify
the shape of v, nor do we have to wonder whether N is the shape of
v, or if N bears any relationship to v.

Generating efficient code for such expressions is challeng-
ing. [1, 3–6, 8, 26] Many existing approaches leverage semantic
knowledge of primitive verbs, adverbs, and conjunctions. Gener-
ated code may contain alternative implementations, which are then
dynamically dispatched.

Things are more challenging when generating parallel code, be-
cause array operation fusion is crucial, to prevent memory accesses
from becoming a bottleneck. Since it is not feasible to support ad
hoc fusion techniques for arbitrary combinations of many primitive
verb, SaC takes a more generic approach, and does not provide any
of the APL verbs, adverbs, or conjunctions as built-in constructs.
Instead, it has one parallel array skeleton – the with loop – which
suffices to define all APL constructs, as well as any desired new
ones, enabling generic compiler technology to optimize arbitrary
combinations of array constructs.

We now show that generic array programming has reached the
point where it combines the expressiveness of natural language and

1 Some of Ken’s insights, often both educational and humorous, can be seen
at: http://keiapl.org/anec/.

mathematics with higher performance than that of hand-optimized
imperative languages. Moreover, that same expressiveness facili-
tates efficient parallel execution, with no tuning effort on the part
of the user, as we shall now see.

2. Relaxation
When generating code for GPUs, even rather well-known codes
benefit from unusual algorithmic specifications. One such example
is relaxation, a common algorithmic pattern used in image process-
ing and in numerical codes for approximating partial differential
equations. For the sake of simplicity, we look at one-dimensional
relaxation, in which a vector is recomputed by replacing a non-
boundary element by the arithmetic mean of its left and right
neighbor elements, while boundary elements remain unchanged. A
straightforward formulation of the kernel code in C is ifc.c:

for(j=0; j<N; j++) {

if(0==j) {

res[j] = v[j];

} else if((N-1)==j) {

res[j] = v[j];

} else {

res[j] = (v[j-1] + v[j+1])/2.0;

}

}

This kernel can be expressed in a more functional, but no more
efficient, manner, as condc.c:

for(j=0; j<N; j++) {

res[j] = (0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

}

In SaC, we can express the computation as three data-parallel
partitions, this way, as hands.sac:

res = with {

([0] <= [j] < [1]) : v[j];

([1] <= [j] < [N-1]) :

(v[j-1] + v[j+1])/2.0;

([N-1] <= [j] < [N]) : v[j];

} : modarray(v);

The result, res, is computed from the vector v by the boundary
elements, (at index positions [0] and [N-1]), and by the arithmetic
mean of the neighboring elements v[j-1] and v[j+1] elsewhere.

This formulation produces excellent performance on a tradi-
tional shared-memory system, but when executed on a GPU, its
performance is suboptimal.[11] This is because GPUs are inher-
ently tuned to a Single-Instruction-Multiple-Threads (SIMT) style.
The following algorithm, conds.sac, similar to condc.c above,
turns out to perform much better on a GPU:

res = with {

([0] <= [j] < [N]) :

(0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

} : modarray(v);

Instead of performing two distinct computations, this algorithm
applies one computation to all elements, at the price of a two-fold
nest of conditionals. This is beneficial on a GPU, but on a shared-
memory system, this trade-off comes at a high price, so we decided
to investigate architecture-independent algorithms.

TDû{(1Ù×),(((2Õ×)+¢2Õ×)ß2.0),¢1Ù×}
ROTû{NûÒ×
 mû(0=ÉN)©(N-1)=ÉN
 (m«×)+(~m)«((1÷×)+¢1÷×)ß2.0}

Figure 1. Two Relaxation Algorithms in APL

3. Abstract Expressionism
We chose to investigate an APL programming style. In APL and
J, a common approach in algorithm design is to compose abstract
expressions from array-based verbs (e.g., addition and multiplica-
tion), adverbs (e.g., reduction), and conjunctions, (e.g., inner prod-
uct). [16] This eliminates the need for many variables and lends
itself to being highly readable, compared to equivalent programs
written in an imperative style. As we shall see, that abstract ex-
pressionist style lends itself to creating SIMD parallel code, usually
with little or no effort on the part of the user.

It is usual, in APL-style programming, to replace control flow
by data flow, frequently through the use of Boolean arrays. For
example, if every employee in a company who earned less than
$10,000 a year was to be given a $500 raise, that would typically
be expressed in an imperative language using control flow. In APL,
Booleans are merely the subset [0, 1] of the integers, so the algo-
rithm could be written as:

pay û pay + (pay<10000)«500

We expressed the relaxation algorithm using the same tech-
nique, replacing control flow by data flow, ending up with two dis-
tinct APL algorithms, shown in Figure 1. TD uses structural array
operations, take (Ù) and drop (Õ) to decompose the vector and op-
erate on its parts, then uses catenate (,) to reassemble the results.
ROT generates a Boolean mask, m, of the same shape as the vec-
tor, with ones at both ends and zeros elsewhere. We then perform
both computations and combine them under control of the mask:2

We also wrote a SaC-based variant that uses array shifting, shown
here:

m = (0 == iota(N)) | ((N-1) == iota(N));

res = (tod(m) * v) + tod(!m) *

((shift([1],v) + shift([-1],v)))/2.0;

Operation of array shift is best shown by example. shift([2],
[0,1,2,3,4]) produces [0,0,0,1,2]. The tod() verb coerces
the Boolean array to double-precision. Note that the algorithm has
no loops or conditionals, in the imperative sense, and memory
management code is absent.

Abstract programming styles are easy to teach to domain spe-
cialists, children, artists, and others who have no background in
traditional scalar-oriented languages, and likely have little or no
interest in learning them. This is because they reflect natural lan-
guage. Furthermore, common coding errors, such as off-by-one
loop counts or array bounds violations, which might occur in the
C code shown in Section 1, and so forth, are less likely to happen.
Finally, because code is functional and mathematically expressive,
an algorithm can be communicated to others easily and quickly.

4. Corresponding C Implementations
In order to put the performance of the algorithm into an absolute
context, we now look at condc.c, a direct transliteration of the
SaC code into C.

#pragma omp parallel for

2 Iverson knew the power of such operations; his 1962 book includes a mask
verb that does exactly what we want, with less work. [15]

for(j=0; j<N; j++) {

res[j] = (0==j) ? v[j] :

((N-1)==j) ? v[j] :

(v[j-1] + v[j+1])/2.0;

}

An openMP pragma enables parallel execution of this embarrass-
ingly parallel loop; an alternative version, handc.c, is simpler:

#pragma omp parallel for

for(j=1; j<N-1; j++) {

res[j] = (v[j-1] + v[j+1])/2.0;

}

res[0] = v[0];

res[N-1] = v[N-1];

In this version, boundary elements are initialized when vectors v

and res are allocated. While this could be considered a mildly
unfair comparison favoring the C implementation, it is, in fact,
not much of an issue, as our benchmark iteratively applies the
relaxation steps, thereby minimizing any difference.

5. Experimental Setup
We conducted performance tests on a multi-core (8 cores, 4 FPUs)
AMD FX-8350 (Piledriver), with 32GB of DRAM, running at
4013MHz, under Ubuntu 14.04LTS, Build #18605 of the sac2c

compiler, and gcc (Ubuntu 4.8.2-19ubuntu1). We measured per-
formance using Ubuntu’s /usr/bin/time command, with thread
counts varying from 1–8.

5.1 Theoretical Peak Performance Rate
Our AMD CPU, running at 4GHz, can issue one 4-wide double-
precision floating-point instruction on each clock cycle, giving a
theoretical peak performance rate of just over 16GFLOP/s for a
single core, and about 64GFLOP/s over all four FPUs. However,
Agner says “. . . Piledriver . . . has a throughput of one 256-bit store
per 17–20 clock cycles".[9] That is 4–5 clock cycles per array
element, so we end up with system-wide peak performance of about
12–16GFLOPs, due to memory subsystem bottlenecks.

6. Single-thread Performance
The relaxation benchmark performance rates for SaC and C are
shown in Figure 2, with curve names as given in Section 2. The 1-
thread column of that Figure gives single-thread performance. We
were surprised to see that SaC single-thread performance is usually
somewhat faster than that of equivalent native C algorithms, despite
the overhead of SaC codes having been compiled in multi-thread
mode.3

What we found more remarkable is that four SaC algorithms –
hands, rotates, shifts, and takedrops – have essentially the
same performance, despite very different stdlib coding styles used
for them, as can be seen in Figure 6 and Figure 7. This performance
level arises from array-oriented optimizations in the SaC compiler,
generating inner loops for the latter three abstract benchmarks that
are identical to the first, hand-optimized one. Generating high-
performance code from abstract, mathematical compositions has
been a major goal of the functional array language community
since before the time of the SISAL project. [1, 4, 5, 20] The fact
that we have achieved this identical performance with radically

3 In an effort to determine why this is so, we timed the SaC algorithms with
the SaC private heap manager disabled. This increased execution times by
about 12%, but that is still more than 10% faster than the equivalent single-
thread C code.

different algorithmic styles is pleasing, even though our example
is relatively simple.

7. Multi-thread Performance
Turning to multi-thread performance, we see that hands, rotates,
shifts, and takedrops all scale decently, with performance ap-
proaching the theoretical platform maximum of 16GFLOPs. The
best-performing C code is handc, which starts off about the same
as SaC , but then scales poorly, ending up at about 11GFLOPs.

Conditional-based codes – condc, conds, ifc, and ifs – all
exhibit lackluster performance, peaking at just over 7GFLOPs,
for both SAC and C, suggesting pipeline problems. The fact that
the compilers map IF-statements into conditional expressions is
evident from the matching performance of conds and ifs, and of
condc and ifc.

8. Code Changes for Parallel Execution
One major difference between the imperative (C, JAVA) and func-
tional array language communities (APEX, J, SaC , SISAL) is the
approach taken to achieve parallel execution. In C, at best, pragmas
must be sprinkled throughout the program, and prolog code, such
as that in Figure 4 and Figure 3, included in the application. In the
functional array language community, parallelism is achieved with
no source code changes.

That a SaC application need not contain target-system-specific
tuning code has several benefits: first, code generation for different
architectures is left to the compiler tool-chain, thereby avoiding any
source code changes, possible code review, and recertification, in
order to operate on, say, a GPU, rather than on a multi-core system.
Second, the mathematical clarity of algorithms is preserved, with
no clutter to mask the intent of the computation or, worse yet,
to introduce faults into an otherwise correct algorithm. Finally,
parallel performance problems such as the failure to privatize a
single variable, thereby causing “parallel slowdown", can not occur.
SaC makes no attempt to preserve ordering of operations on real
numbers, so non-associativity problems can arise, as they do in any
parallelization scheme.

9. Code Volume
Another benefit of programming with abstract expressions is that
algorithms are shorter and, therefore, more readable. The APL
community has known this for more than fifty years, yet is regularly
derided for it, despite the fact that effective communication among
humans must be performed with as little verbiage as possible.

One of us (Bernecky) regularly asserts that code that is not there
can not break. Assuming that this is true, and that code fault rates
are proportional to code volume, what does our benchmark tell us
about this? Well, admittedly, nothing, but it does suggest that you
might prefer to ride in a train whose controlling software is written
in a functional array language, rather than an imperative language.

10. Flexibility
Unlike languages in which parallelism is achieved through hand-
tuned libraries (e.g., BLAS), or through built-in language con-
structs (e.g., APL, J), SaC offers great flexibility, in that libraries
are made from SaC code: new libraries can be created on demand
and, because they are exposed to the compiler’s optimizations, per-
form as well as if they had been written as inline code.[2, 13]

11. Communicating Algorithms
Functional array languages lend themselves to formal theorem
proving, as a number of people have shown. [14, 16, 17, 22] In

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Number of threads

G
FL

O
P/

s

Relaxation Performance

Theoretical Peak Perf.

shifts

hands

rotates

takedrops

handc

conds

ifs

condc

condstc

handstc

ifc

ifstc

Figure 2. Relaxation Benchmark Performance

this sense, we assert, without proof, that those languages are supe-
rior to imperative languages, because they facilitate formal proofs
and communication of an algorithm’s underlying ideas. Iverson
called APL an executable analytical notation, reflecting its utility
as both a mathematical notation, and as a programming language.

Communication of algorithms is eased by the fact that func-
tional array language programs are generally much shorter than
those written in imperative languages. Furthermore, if the number
of faults in a program is proportional to its size, then terse programs
have another edge over long ones.

Functional array languages are popular in financial markets, be-
cause people dealing in extremely large amounts of money have
this idea that people writing programs that will become You Bet
Your Company applications should be able to convince their col-
leagues that the applications will work properly when released. The
rapid time-to-solution provided by functional array languages gives
those companies a leg up over their competition. [1]

12. Related Work
We note three areas of related work: optimization/code genera-
tion from DSLs, code generation for generic array programs, and
sophisticated optimization/code generation from imperative lan-
guages, such as C or Fortran.

Since each of these areas is vast, and we have limited space,
we focus on a few representative works that demonstrate how these
three areas are steering towards an increasingly common ground.
In DSL approaches, Spiral [23] demonstrates nicely how special-

ized knowledge of signal processing can be leveraged to generate
excellent runtime performance from very high-level specifications.
Recently, Spiral is attempting to generalize the approach towards
more generic linear algebra expressions [25], i.e., exactly the sub-
class of array programs of which this paper is concerned. A lot of
effort has been put into compilation of high-level array languages,
such as compilation of APL[6, 12] and Matlab[19]. Most of these
approaches are, in principle, very similar to the work presented
here, but the generality of the source language often inhibits a sim-
ilar effectiveness. Recent work on the identification of semantical
difficulties[7] indicates that, ultimately, similar performance levels
might be achievable.

In classical high-performance computing, advances over the last
few years have tried to bridge the gap between human-readable
specifications and highly-performing codes. A lot of work has been
done in the context of the polyhedral model [18, 24], where sophis-
ticated code manipulations can transform naive codes into highly
sophisticated ones. Another example is the build-to-order BLAS
project [21], where the authors demonstrate how elaborate code
generation techniques can outperform highly tuned library codes.
While these works are not primarily concerned with high levels of
abstraction, they implicitly get closer to a point where more abstract
program specifications no longer impede overall performance.

13. Summary
We claim that algorithms written in functional array languages are
shorter, faster in both serial and parallel modes, and are easier to

read and to communicate than when written in C. We did not prove
that communication is easier, but we provided some evidence to
support that assertion. We showed that the relaxation benchmark
is shorter in SaC than in C, even without any OpenMP constructs,
and that top-performing abstract expressionist algorithms can be
written in a purely functional way.

We also showed that all SaC-based variants outperform the
C-based equivalents, and that the functional variants – hands,
rotates, shifts, takedrops – share top honors for top perfor-
mance because, despite their radically different coding styles, they
all generate identical inner loops.

We assert that abstract expressionist programming is likely to
result in fewer bugs than other styles, because less code implies less
chance of errors. The utter absence of any explicit memory alloca-
tion and deallocation, combined with a call-by-value semantics on
arrays, also reduce the frequency of program faults. Similarly, the
absence of all explicit parallel constructs, such as pragmas, elimi-
nates another possible source of code faults and poor performance,
particularly when cross-architecture support is required.

In our experience, domain specialists prefer functional array
languages for these reasons and others. Such languages, used in
conjunction with an abstract expressionist programming style,
comprise a rising tide that will raise all ships.

Acknowledgments
This work was supported in part by grant EP/L00058X/1, from
the UK Engineering and Physical Sciences Research Council (EP-
SRC). The late Ken Iverson, an Albertan farm boy, had many ex-
cellent insights, for which we are grateful. The excellent perfor-
mance of the sac2c compiler is due to the diligence of many re-
searchers, whose contributions can be found on the SaC web site
at http:sac-home.org. Our thanks to Philip Mucci and John D.
McCalpin for answering our AMD architecture questions. We also
thank the anonymous referees for their thoughtful comments.

References
[1] R. Bernecky. APEX: The APL Parallel Executor. Master’s thesis,

University of Toronto, 1997.

[2] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An updated set of Basic Linear
Algebra Subprograms (BLAS). ACM Transactions on Mathemati-
cal Software, 28(2):135–151, June 2002. ISSN 0098-3500. URL
http://doi.acm.org/10.1145/567806.567807.

[3] T. Budd. An APL Compiler. Springer, 1988.

[4] D. Cann. Retire Fortran? A Debate Rekindled. Communications of
the ACM, 35(8):81–89, 1992.

[5] D. Cann. The Optimizing SISAL Compiler: Version 12.0. Lawrence
Livermore National Laboratory, LLNL, Livermore California, 1993.
Part of the SISAL distribution.

[6] W.-M. Ching. An APL/370 compiler and some performance com-
parisons with APL interpreter and FORTRAN. ACM SIGAPL Quote
Quad, 16(4):143–147, July 1986.

[7] A. W. Dubrau and L. J. Hendren. Taming matlab. In Proceedings
of the ACM international conference on Object oriented programming
systems languages and applications, OOPSLA ’12, pages 503–522,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6. . URL
http://doi.acm.org/10.1145/2384616.2384653.

[8] J. Feo. Arrays in Sisal, chapter 5, pages 93–106. Arrays, Functional
Languages, and Parallel Systems. Kluwer Academic Publishers, 1991.

[9] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,
2010.

[10] C. Grelck and S.-B. Scholz. SAC: A functional array language for
efficient multithreaded execution. International Journal of Parallel
Programming, 34(4):383–427, 2006. .

[11] J. Guo, J. Thiyagalingam, and S.-B. Scholz. Breaking the gpu
programming barrier with the auto-parallelising SAC compiler. In
6th Workshop on Declarative Aspects of Multicore Programming
(DAMP’11), Austin, USA, pages 15–24. ACM Press, 2011.

[12] A. W. Hsu. Co-dfns: Ancient language, modern compiler.
In Proceedings of ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Pro-
gramming, ARRAY’14, pages 62:62–62:67, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2937-8. . URL
http://doi.acm.org/10.1145/2627373.2627384.

[13] International Standard for Programming Language APL. Interna-
tional Standards Organization, ISO N8485 edition, 1984.

[14] K. Iverson. Algebra: an Algorithmic Treatment. APL Press, 1976.
[15] K. E. Iverson. A Programming Language. John Wiley & Sons, Inc.,

1962.
[16] K. E. Iverson. Programming style in APL. In APL Users Meeting

1978. I.P. Sharp Associates Limited, 1978.
[17] K. E. Iverson. Notation as a tool of thought. Commun. ACM, 23(8),

Aug. 1979.
[18] M. Kong, A. Pop, L.-N. Pouchet, R. Govindarajan, A. Cohen, and

P. Sadayappan. Compiler/runtime framework for dynamic dataflow
parallelization of tiled programs. ACM Trans. Archit. Code Op-
tim., 11(4):61:1–61:30, Jan. 2015. ISSN 1544-3566. . URL
http://doi.acm.org/10.1145/2687652.

[19] X. Li. Mc2for: A tool for automatically translating MAT-
LAB to FORTRAN 95. pages 234–243. IEEE, 2014. URL
http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=6747175.
[20] L. M. R. Mullin. A Mathematics of Arrays. PhD thesis, Syracuse

University, 1988.
[21] T. Nelson, G. Belter, J. G. Siek, E. Jessup, and B. Norris. Reliable

generation of high-performance matrix algebra. ACM Transactions on
Mathematical Software, 41(3).

[22] D. Orth. Calculus in a New Key. APL Press, 1976.
[23] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,

B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Gen-
eration, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[24] J. Shirako, L. Pouchet, and V. Sarkar. Oil and water can
mix: An integration of polyhedral and ast-based transformations.
In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, New Orleans, LA,
USA, November 16-21, 2014, pages 287–298, 2014. . URL
http://dx.doi.org/10.1109/SC.2014.29.

[25] D. G. Spampinato and M. Püschel. A basic linear algebra compiler.
In International Symposium on Code Generation and Optimization
(CGO), pages 23–32, 2014.

[26] J. Weigang. An Introduction to STSC’s APL compiler. In APL89
Conference Proceedings, pages 231–238. ACM SIGAPL Quote Quad,
volume 15, 1989.

if (argc<2) {

printf("provide num_threads!\n");

exit;

} else {

num_threads = atoi(argv[1]);

}

printf("num Threads: %d\n", num_threads);

omp_set_num_threads(num_threads);

kind = omp_sched_auto;

mod = 0;

omp_set_schedule(kind, mod);

Figure 3. OpenMP C prolog

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

#define ITER 100000

int main(int argc, char *argv[]) {

int i,j,N,mod,num_threads;

double sum,el;

#ifdef OPENMP

omp_sched_t kind;

#endif // OPENMP

N = 100001;

double *v = malloc(sizeof(double)*(N));

double *res = malloc(sizeof(double)*(N));

double *tmp;

for(i=0; i < N; i++) {

v[i] = 2.0;

res[i] = 2.0;

}

v[N/2] = 500.0;

res[N/2] = 500.0;

#ifdef OPENMP

#include "prolog.h"

#endif // OPENMP

for(i=0; i<ITER; i++) {

#ifdef OPENMP

#pragma omp parallel for

#endif // OPENMP

#include "kernel.c"

tmp = res;

res = v;

v = tmp;

}

sum = 0.0;

for(j=0; j<N; j++) { sum += res[j]; }

printf("C result is %f\n", sum);

return(0);

}

Figure 4. C benchmark code

use Array: all;

use StdIO: all;

#define ITER 100000

int main() {

N = 100001;

v = genarray([N], 2d);

v[N/2] = 500d;

res = v;

for(i=0; i<ITER; i++) {

#include "kernel.sac"

v = res;

}

show(String::tochar("SaC result is:"));

show(sum(res));

return(0);

}

Figure 5. SaC benchmark code

inline

double[*] take(int[.] v, double[*] array)

{

shpa = _shape_A_(array);

zr = _mul_VxS_(shpa, 0);

offset = zr;

vext = shpa;

i = 0;

while (_lt_SxS_(i, _sel_VxA_([0],

_shape_A_(v))))

{

el = _sel_VxA_([i], v);

shpel = _sel_VxA_([i], shpa);

vext = _idx_modarray_AxSxS_(vext, i, el);

val = _mask_SxSxS_(_lt_SxS_(el, 0),

_add_SxS_(shpel, el), 0);

offset = _idx_modarray_AxSxS_(offset,

i, val);

i = _add_SxS_(i, 1);

}

shpz = _abs_V_(vext);

res = with {

(. <= iv <= .)

{

} : _sel_VxA_(_add_VxV_(offset, iv),

array) ;

} : genarray(shpz, zero(array));

return(res);

}

Figure 6. SaC stdlib take

inline

double[+] rotate(int dimension,

int count, double[+] A)

{

max_rotate = _sel_VxA_([dimension],

_shape_A_(A));

count = NormalizeRotateCount(count,

max_rotate) ;

offset = _modarray_AxVxS_(_mul_SxV_(0,

_shape_A_(A)),

[dimension], count);

slice_shp = _modarray_AxVxS_(_shape_A_(A),

[dimension], count);

result = with {

(offset <= iv <= .)

{

} : _sel_VxA_((iv - offset) , A) ;

} :

modarray(A);

result = with {

(. <= iv < slice_shp)

{

} : _sel_VxA_(((_shape_A_(A)

- slice_shp) + iv) , A) ;

} :

modarray(result);

return(result);

}

Figure 7. SaC stdlib rotate

