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Abstract

Although multicomputers are becoming feasible for
solving large problems, they are difficult to program:
Extraction of parallelism from scalar languages is
possible, but limited. Parallelism in algorithm de-
sign is difficult for those who think in von Neumann
terms. Portability of programs and programming
skills can only be achieved by hiding the underly-
ing machine architecture from the user, yet this may
impact performance on a specific host.

APL, J, and other applicative array languages with
adequately rich semantics can do much to solve these
problems. The paper discusses the value of ab-
straction and semantic richness, performance issues,
portability, potential degree of parallelism, data dis-
tribution, process creation, communication and syn-
chronization, frequency of program faults, and clar-
ity of expression. The BLAS are used as a basis
for comparison with traditional supercomputing lan-
guages.

�This paper originally appeared in the ACM SIGAPL APL93
Conference Proceedings. [Ber93b]

1 Introduction

Single processor computers based on electrical tech-
nology are reaching their performance limits, due to
factors such as fundamental limits of optical lithog-
raphy and the speed of light. It is easy to envision
silicon-based computers which are a hundred times
faster than today’s processors, but speed improve-
ment factors of thousands are unlikely.

Therefore, in order to achieve performance im-
provements, computer architects are designingmulti-
computers– arrays of processors able to work
concurrently on problems. Multi-computers are
hard to program. In a computing world which
is, by and large, stillaccustomed to the von Neu-
mann single-processor computing paradigm, multi-
computers present several problems:

� Most programming languages were designed
from a von Neumann outlook, and inherently
possess no more capability for parallel expres-
sion than does a cash register. Extracting paral-
lelism from programs written in such languages
is difficult, since when any parallelism inherent
in the algorithm is discarded by the limited ex-
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pressiveness of the language used to describe
the algorithm. Wall’s study of instruction-level
parallelism [Wal91] obtained a median level of
parallelism of 5, even assuming very ambitious
hardware and software techniques were avail-
able.

� Algorithm design has, by and large, been done
from the von Neumann viewpoint, blinding
people to the potential for parallel solutions to
problems. In the past 25 years, only user of
APL and a few other languages have taken par-
allel algorithm design seriously.

� Matching algorithms to machine architectures
is difficult; making portable algorithms which
run well on a variety of network topologies is
even harder. Most adaptations of scalar lan-
guages to parallel expression have been done
from the standpoint of a particular machine
design, andrequire that the application pro-
grammer explicitly embed those architectural
assumptions in the application program. Those
language designers have abdicated their respon-
sibility to provide programming tools that can
be effectively used by the masses. They have
merely passed the problems of synchronization,
communication, and data distribution on to the
users, who must embed such architectural con-
siderations in their programs. Such embedding
inhibits program portability and thereby limits
the utility of programs written in such dialects.

Given these and other such problems, what can
we, as language designers and compiler writers, do
to alleviate or eliminate them?

The thesis of this paper is that applicative array
languages with adequate richness, such as APL and
J, can do much to solve these problems. The follow-
ing sections will deal with issues including the value
of semantic richness and abstraction, performance

issues, portability, potential degree of parallelism,
data distribution, process creation, communication
and synchronization, frequency of program faults,
and clarity of expression. The BLAS [LHKK79] are
used as a basis for comparison with traditional super-
computing languages.

2 A Brief Overview of APL and J

Applied mathematics is concerned
with the design and analysis of algorithms
or programs. The systematic treatment
of complex algorithms requires a suitable
programming languagefor their descrip-
tion, and such a programming language
should be concise, precise, consistent over
a wide area of application, mnemonic, and
economical of symbols; it should exhibit
clearly the constraints on the sequence in
which operations are performed; and it
should permit the description of a process
to be independent of the particular repre-
sentation chosen for the data.

Existing languages prove unsuitable
for a variety of reasons. [Ive62]

Ken Iverson originally created APL as a notation
for teaching mathematics, and it was only later that
the idea of implementing APL as a language on a
computer was seriously considered. That the design
took place independent of any particular computer
system is perhaps one reason why APL differs so
greatly from traditional languages.

The primary characteristics of APL which set it
apart from other languages are:

� Array orientation

� Adverbs and conjunctions

� Consistent syntax and semantics
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APL is an array-oriented language – all primitives
are defined by their actions on entire collections of
data. This orientation provides inherent parallelism;
its importance was only recently recognized by the
designers of other languages [Cam89]. Scalar func-
tions, which work on each element of their argu-
ments independently, are a simple example of the
power of APL. Consider the task of multiplying two
tables of numbers,x andy, and adding a constant,z,
to them. This can be written in APL asz+x«y and
in J asz+x*y . For example,

3+4 5 6«2 1 0
11 8 3

Note that the argument shapes are inherently
known. There is no need for the programmer to
maintain information about array properties indepen-
dent of the array itself. Each array contains informa-
tion as to its type, rank, shape, and value, which is
automatically propagated from function to function.

APL and J are functional, in that arguments to
verbs (functions) are entire arrays, called by value,
and results are arrays. Side effects are rarely used or
needed in APL.

APL includes the concept of adverbs and conjunc-
tions (operators) that modify the behavior of verbs,
just as they do in natural language. For example, the
insertor reduceadverb, denoted/, insertsits left ar-
gument among the subarrays of its right argument.
For example,

+/1 2 3 4 ã Sum
10

«/1 2 3 4 ã Product
24

Ó/1 2 3 4 ã Maximum
4

Adverbs are perhaps APL’s most important contri-
bution to computing. They provide a powerful, con-

sistent way of describing many commonly required
functions. Two of the most powerful adverbs in APL
are inner product and rank. Inner product generalizes
the matrix product of linear algebra to arrays of any
dimension, and to any verbs, not just plus and times
[Ber91a, Ber91b]. For example, they have utility in
associative searching and computation of transitive
closure (TC):

Inner product form APL form J form
Matrix product x+.«y x +/.* y
Associative search x^.=y x *./.= y
TC step x©.^y x +./.*. y

The reverseverb (|. ) reverses the order of the
leading axis of its argument:

tbl =. i. 2 3 4
NB. 2 planes,3 rows,4 cols
tbl NB. value of tbl

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

|. tbl NB. Reverse the planes.
12 13 14 15
16 17 18 19
20 21 22 23

0 1 2 3
4 5 6 7
8 9 10 11

The rank adverb (" ) [Ber87] specifies the dimen-
sions of the arguments to which a specific verb is to
be applied, and thereby greatly enhances the power
of the verb. In this example of rank in conjunction
with reverse it permits reversal of rows or columns
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as well as planes:

NB. Reverse each plane
|."2 tbl

8 9 10 11
4 5 6 7
0 1 2 3

20 21 22 23
16 17 18 19
12 13 14 15

NB. Reverse each row
|."1 tbl

3 2 1 0
7 6 5 4

11 10 9 8

15 14 13 12
19 18 17 16
23 22 21 20

Later examples will clarify rank can introduce par-
allelism in the form of SPMD (Single Program, Mul-
tiple Data) capabilities, and as a general way to ob-
tain greater expressive power from even simple verbs
such as addition.

The above overview is necessarily brief and in-
complete. For a more complete view of the various
dialects of APL and their capabilities, refer to texts
on J [Ive96, Ive91] and APL [IBM94, BB93].

3 The Benefits of Abstraction

APL is more abstract than other computer languages,
in terms of data storage methodology and the func-
tional capabilities provided to its users.

3.1 Numerical Abstraction

APL differs from many other computer languages in
that it deals with data in the abstract – numbers and

characters, rather than ints, longs, reals, double pre-
cisions, and so on. Relational expressions produce
Boolean results; adding to a Boolean produces an in-
teger; dividing integers by an appropriate number re-
sults in reals, and taking the square root of negative
numbers results in complex numbers. All this is done
without the user’s knowledge or permission, for bet-
ter or worse. The problems with such an approach
are well-known to the numerical analyst, who may
prefer to have things screech to a halt when they are
not firmly in control, or to be able to trap the event
and take appropriate action.

However, there are advantages to expressing num-
bers as numbers, and letting the machine handle
whatever conversions are required. Among those ad-
vantages are architectural independence and reduced
code volume, allowing the programmer to concen-
trate on the problem at hand, rather than being con-
cerned about how the computer is going to store
numbers.1

By not requiring the user to specify the type of
each array involved in a computation, the system is
free to choose a representation which is most ap-
propriate for the particular computer system and the
verb currently being executed. For example, mov-
ing from 32-bit integer to 64-bit integer machines
is transparent to an APL application. Moving from
S/370 floating point format to IEEE format is also
transparent for most applications, although numeri-
cal analysts and those who have stored character ar-
rays as numbers for some peculiar reason are obvi-
ously going to be affected.

3.2 Abstraction of Relationals

The abstraction of treating relationals as verbs which
return results, rather than embedding them in control

1There are ways to deduce data types, and otherwise ensure
that they remain as you desire, but the need for them is the ex-
ception rather than the rule.
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structures, increases their power and makes it possi-
ble to treat most control flow problems as data flow
problems. For example, adding5 to the numbers
with a3 residue of2 in the arrayeo can be written in
a loop-free and IF-free manner as:

eo+5*2=3|eo

This transformation from control structure depen-
dence to data flow dependence is based on properties
of arithmetic identities. Nonetheless, such transfor-
mations work well in a large number of cases, and
J’s gerunds handle the remainder.

Elimination of control structure dependencies is
critical to performance because control structure de-
pendencies often stall pipelines, whereas data depen-
dencies need not. Although techniques are avail-
able for removing such dependencies from tradi-
tional programs [AKPW83], programs written using
control flow techniques are often harder to read, un-
derstand, and maintain than the same program writ-
ten without them. Compare and contrast the above
expression oneo with the corresponding Fortran
code using loops and an IF statement, or even with
the Fortran 90 WHERE/ELSEWHERE construct.

3.3 Abstraction of Verbs

APL provides a large set of general array primitives,
which are considerably more substantial than those
provided by other languages. Data structure verbs
include such facilities as tranposing, rotating, and re-
versing arrays of arbitrary type. Search primitives
include grading, set membership, generalized array
matching, and locate.

Making these verbs available as primitives has
several beneficial effects on large scale computation:

� Productivity – by making frequently required
facilities available as primitives, APL frees the
programmer from the drudgery of having to

write many lines of code to perform common
functions such as searching for a part number.
The primitive is there, ready for instant use.

� Improved code reliability – the primitives are
written by professionals and are used daily in a
myriad applications. There is no need to debug
yet another hand-coded sort routine, or to dis-
cover that a system is running slowly because it
uses a bubble sort.

� Portability and performance – an algorithm
which is optimal for one machine architecture
may perform dismally on another. For ex-
ample, binary search may be wonderful on a
Cray X-MP, but a Connection Machine can per-
form searching in unit time, and a binary search
slows it down considerably. Abstraction of the
required capability – set membership or sorting,
for instance – leaves the system implementor
free to write the best possible code for a spe-
cific platform, and the application programmer
can rest assured that, in all but the most arcane
cases, the system will do a better job than he or
she can.

Moreover, when an application is ported to an-
other architecture, the user effort required to ob-
tain that ultimate performance on the new ar-
chitecture is zero. This is not the case with
low level algorithms, which are highly depen-
dent upon the peculiarities of today’s architec-
ture and today’s technology. Todays’s hot code
may be tomorrow’s dog – unrolled loops, which
run quite well on most vector machines, may
run slower on SIMD machines than does the
original code.2

2Flynn’s taxonomy of computer architectures includesSISD:
Single Instruction, Single Data;SIMD: Single Instruction, Mul-
tiple Data;MIMD: Multiple Instruction, Multiple Data. A re-
lated acronym,SPMD: Single Program, Multiple Data, means
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� New algorithms – advances in algorithm design
have immediate payoffs at no cost to the ap-
plication writer. In interpreted APL, for exam-
ple, the orders of magnitude performance im-
provement which occur when someone installs
a highly optimized inner product algorithm are
immediately available to all users. In a com-
piled environment, merely recompiling the sys-
tem will have the same effect. It is as if some-
one looked at all your programs, found all oc-
currences of inner product, and rewrote them
for you.

In a system with limited abstraction, where the
user is forced to write at a low level, adoption
of new algorithms, such as the Boyer-Moore
string search, are available only by having each
user take the time to redesign, recode, and retest
each and every instance of such searches.

� Reduced code volume – just as mathematicians
use a concise notation to describe their ideas in
a uniform, easily read and verifiable manner, so
does a concise notation benefit programmers.
This has a large cost impact both in terms of
reading programs, which is critical when main-
taining or enhancing programs, and in the relia-
bility of such programs. Since program failure
rates are highly correlated with code volume,
the bigger a system is, the more things there
are that can cause it to fail. By reducing code
volumes by an order of magnitude, APL and J
improve code reliability and maintainability.

Programmer code production rates are fairly
fixed in terms of lines of code produced per day.
Since a line of APL code does an order of mag-
nitude more work than a line in another lan-
guage, APL programmer productivity is much
greater. This is why organizations such as bro-

the running of the same program on multiple processors.

kerage house, where time is critical to profit,
use APL extensively.

� Mediocre programmers3 can write good code
– those whose expertise lies in areas other than
computing, such as chemistry, medicine, or en-
gineering, are not likely to be interested in
spending a large portion of their time learning
the details of cache management, data distribu-
tion, code scheduling, or loop unrolling. They
rightly consider the computer as a tool for ob-
taining an answer to a problem in their disci-
pline, and often do not know if the method they
use is the most elegant or efficient one available.
As a result, it is common to see computer and
supercomputer applications using tens or hun-
dreds of times more resources than is, strictly
speaking, necessary. This is due in part to naiv-
ity and part to the users’ perception of how their
own time is best spent. Most often, that time
is spent in non-linear areas where a little bit of
computer knowledge would help a lot – sorting,
searching, and the like.

By making highly tuned versions of such com-
monly required functions available to the user
directly as primitives, APL helps users to write
more efficient code. A computational chemist
may not be able to write a binary search, but
with APL search primitives, there is no need to
do so. The straightforward and obvious solu-
tion using the primitive is also the optimal solu-
tion. Thus, mediocre programmers are able to
produce code which both meets their needs and
runs well.

3This is not intended as an insult. It is simply a recognition
of the fact that not everyone can be, has the time to be, or wants
to be, a computer wiz.
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3.4 Data Structure Abstraction

Most programming languages expose the underlying
data structure of arrays to the user. Some deem this
a Good Thing, inasmuch as it lets the programmer
use knowledge of that data structure to advantage.
For example, in Fortran, a user can EQUIVALENCE
two arrays, and deduce properties about array stor-
age, including data type, adjacency of elements, and
so on. In C, the use ofpointerspermits rapid access
to array elements.

However, exposure of data structures is a two-
edged sword. There are a number of Bad Things
about exposure, which are neatly avoided by treat-
ing data structures as abstract entities:

� Aliasing – if an array can be referred to in differ-
ent ways, then compilation of efficient vector-
ized or parallelized code to operate on that array
can be difficult or impossible, because of the in-
ability of the compiler to ascertain the absence
of data dependencies among array elements.

In the case of languages which supportpointers,
the problem is exacerbated, because, except in
the most recent dialects, there is no firm knowl-
edge at all about the contents of a pointer. This
means that any pointer expression can poten-
tially conflict with a reference to any variable.

� Array distribution – The order in which array
elements are accessed impacts the performance
of applications. Fortran stores column elements
adjacently, which makes columnar access rapid,
due to high cache hit ratios and storage inter-
leaving. Access to adjacent row elements may
be considerably slower, due to cache misses,
storage bank conflicts, and page faults. In a
multi-computer with distributed storage,access
to an element may be affected by the network
distance to the processor which holds the ac-
cessed element.

These problems can be dealt with most easily by
hiding the physical attributes of array storage from
the user, and by forbidding aliasing. Can this be done
without significantly affecting performance? Let us
find out.

3.4.1 Alias Avoidance

Aliasing occurs when an array may be known by
more than one name. This occurs in Fortran with
EQUIVALENCE, and in C with pointers. APL has
no cognate to EQUIVALENCE. In a functional lan-
guage, such constructs are undesirable – they make
comprehension of a program difficult as well as mak-
ing it hard to extend, maintain, and optimize pro-
grams which use such constructs.

Equivalencing as a storage management method
is a harder call. Few languages have good sup-
port for non-rectangular data structures, except as
application-controlledvectors of storage, or as recur-
sive data structures, with their attendant overhead.
Some such equivalencing may grow out of Fortran’s
static storage management. Lack of storage alloca-
tion tools, remedied but not automated in Fortran 90
[Cam89], is only part of the solution, because the de-
signers of Fortran 90 dropped that task back onto the
application writer as well [Ber91b, Ber91a].

APL, by contrast, has inherently automatic alloca-
tion and deallocation for storage. Arrays are created
when required and deleted when no longer required.
This eliminates many of the storage problems asso-
ciated with Fortran. It probably does not, however,
eliminate all of them.

Equivalencing has impact on vectorization and
parallelization, in that data dependency analysis is
further complicated by having what are really two or
more arrays being manipulated as if they were the
same array. The art of data dependency analysis has
not yet reached the stage where all dependencies can
be detected. In such cases, the compiler must take a
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conservative view, and refuse to vectorize or paral-
lelize the offending code.

Functional programming is important in the avoid-
ance of aliasing. Aliasing can only occur if objects
are given names and synonyms. Function program-
ming uses a number of techniques to avoid these sit-
uations. Among them are:

� Functional programming itself – by avoiding
the use of side effects to alter global variables,
function programming simplifies the task of
data flow and data dependency analysis. This
eases the task of vectorization and paralleliza-
tion, since there are few or no dependencies
among computations.

� Single assignment – this technique, used by lan-
guages such as SISAL [MSA+85], allows the
use of named variables, but permits them to
be assigned a value only once. Single assign-
ment languages simplify the task of paralleliza-
tion and vectorization considerably. Indeed,
SISAL is regularly beating Fortran on a number
of large numerical benchmarks [Can92], mostly
because of this simplicity. However, SISAL
and other such languages are perhaps not the
best tools for end users, as their computational
power is not complemented by a similar expres-
sive power. APL has the potential to offer both
expressive power and computational power, but
has yet to prove itself on the latter in the super-
computing arena.

� Tacit definition – this notation, developed by
Hui, Iverson, and McDonnell [HIM91, MI89],
goes a step beyond functional programming. In
functional programming, the unnamed results
of computations are themselves permitted as ar-
guments to other computations. In tacit defini-
tion, the arguments to the functions themselves

are not explicitly named. For example, a defini-
tion of the arithmetic mean, written as:

(sum x) dividedby shape x

can be written explicitly in APL as(+/x)ßÒx
and in J as(+/x)%#x .

J also provides a tacit form, in whichall argu-
ments are elided. The placement of arguments
within an expression is determined solely by the
presence offorks and hooks. Space does not
permit a full discussion of tacit programming,
but

A wide class of explicit definitions
can be expressed in tacit form using
the facilities of J [HIM91].

The basic idea behind the fork is that if three
verbs appear in isolation, they represent afork,
which is to be interpreted as follows: The fork
X (f g h) Y , in whichX andY are values and
f , g, andh are verbs, is:

(X f Y) g (X h Y)

Drawing the associated syntax tree for this ex-
pression immediately reveals why it is called a
fork. The tacit program for the arithmetic mean
can be written concisely in J using a fork as
(+/ % #) .

Tacit definition removes the complication of
data flow and data dependency analysis from
the compilation process. Second, it offers a de-
gree of parallelism itself, in that even the simple
fork presented above allows the computations
usingf andh to proceed in parallel.

3.4.2 Automatic Array Distribution

Storage allocation and distribution of data among
processors for high performance is a critical and
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largely unsolved problem in the design of multi-
computer systems. In any multi-computer system,
arrays must be accessible by those processors using
their elements.

In a shared storage system, access to non-local
storage is often tens or hundreds of times slower than
access to a processor’s local storage. In such a sys-
tem, failure to allocate array elements at a processor
which accesses them frequently can negate the de-
sired performance gain of using a multi-computer.
Folk wisdom among multi-computer users is thatthe
data you want is always on the other processor. How
can we ensure that data is where it should be, when
we want it to be there? Let us look at how it is done
today.

The Steele status report on High Performance For-
tran [Ste93] (HPF) offers some good background
material on the issues dealt with in this paper. Two of
the directives discussed in the report are the ALIGN
and DISTRIBUTE statements. These are intended to
ensure that data can be associated with specific pro-
cessors, for maximum computational speed. Since
library routines are often written for maximum per-
formance with little concern for the caller’s data, this
will guarantee that each subroutine library routine
will require a different data distribution!

Such directives, orpragmas, as they are more
commonly referred to, are valid within the scope of
Fortran 90, but one is led to wonder whether the need
for such pragmas is caused by Fortran’s semantic
poverty. A semantically richer language offers more
information to the compiler about what is going on,
and much of the value of the pragma is rendered nu-
gatory.

The assumption that subarrays should be associ-
ated directly with processors is shortsighted, and re-
flects today’s architectural view of reality. Newer
machines will have improved connectivity, and other
concerns, such as the destination of the resulting data
elements, may be more important than having the ar-

gument elements immediately close at hand.
A fundamental design principle violated by HPF

is that of separation of the algorithm from its im-
plementation – An implementation on a specific ma-
chine architecture is tangled up with today’s engi-
neering constraints, the state of the art of machine
design, and so on. This produces a goulash, rather
than an algorithm, resulting in code which is non-
portable to machines whose design we can not yet
envision.

APL hides the implementation from the user, and
leaves the writer free to concentrate on the problem
at hand. It is the responsibilityof the compiler writer,
not the user, to ensure that the application achieves
peak performance on the target architecture. How
can this be done?

Consider the task of array allocation. To avoid
cache interference, and maximize the benefits of in-
terleaved main store access, an array must be ac-
cessed stride-1 for maximum performance. Yet such
access is highly dependent upon the target machine’s
architecture and configuration. Is the user to em-
bed host-specific code around every loop, to spread
arrays across storage in such a way as to achieve
this performance level? Of course not. There is not
enough time to do so, nor is it clear that the benefits
of doing so are worth the application programmer’s
time to achieve it.

Suppose that the compiler was to undertake this
task, and determine appropriate array storage meth-
ods for each array. It might, for example, append
extra columns to an array, so that particular refer-
ence patterns would be optimal in an interleaved
or multi-computer environment. It might broad-
cast multiple copies of array segments to different
processors, based on knowledge of access patterns.
This is difficult in a language which supports alias-
ing and EQUIVALENCE, because those constructs
make strong assumptions about inter-element dis-
tance and storage allocation techniques.
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In APL, on the other hand, all array accesses are
abstract, and it is impossible for a user to discern
the internal storage representation used for an ar-
ray. Therefore, there are no inhibitions to performing
such storage management optimizations, and it can
all happen with no work by the application writer.
This provides another benefit, in that programs writ-
ten without machine dependencies are inherently
portable.

Abstraction makes a language easier to teach, to
learn, and to use. If you are not concerned with the
details of the underlying machine’s architecture, then
you can concentrate on your problem and its solu-
tion.

4 Expression and the Programmer

A semantically rich language is of immense value
because knowledge in one area benefits another –
learning ten verbs and twenty adverbs gives the po-
tential for specifying 200 different actions. Simi-
larly, a computer language with conjunctions and ad-
verbs offers richness of expression to the program-
mer. For example, ISO Standard APL permits any of
the dyadic verbs in Figure 1 to be used in conjunc-
tion with thereduceor insertadverb, in a consistent
manner. Insert places the verb between the subarrays
of the right argument, then evaluates the resulting ex-
pression. Thus, summation is expressed as+/, alter-
nating sum is-/, product is«/, maximum isÓ/,
and so on. Modern APL dialects permit any verb,
including user-defined verbs, to appear as the left ar-
gument to insert. For example,+.«/ can be used to
multiply a chain of matrices together.

The simple and consistent behavior of adverbs and
conjunctions in APL gives the programmer an ex-
cellent set of parts from which to construct the spe-
cific tool required to solve a particular problem. This
erector set approach is in sharp contrast to the Swiss

army knife approach taken by Fortran 90, in which
the set of tools is limited by the imagination of the
language designer, rather than by the imagination of
the user. For example, there is no alternating sum
reduction in Fortran 90, although such sums occur
frequently in physics and engineering.

The value of richness of expression goes beyond
its utility to the programmer. It makes life easier for
interpreter and compiler writers, who can exploit a
single advance over a wide range of areas. As a real-
life example of this, consider the inner product con-
junction in APL.

In APL, the inner productf.g denotes a matrix
product in whichg is the function used to combine
argument array elements, andf is the function used
in the reduction into the result. The traditional ma-
trix product of linear algebra is written as+.«; one
step of a Boolean transitive closure on an adjacency
matrix is©.^.

In the late 1970’s, I was manager of the APL de-
velopment department at I.P. Sharp Associates Lim-
ited. A number of users of our system were con-
cerned about the performance of the©.^ inner prod-
uct on large Boolean arrays in graph computations.
I realized that a permuted loop order would permit
vectorization of the Boolean calculations, even on a
non-vector machine.4 David Allen implemented the
algorithm and obtained a thousand-fold speedup fac-
tor on the problem. This madeall Boolean matrix
products immediately practical in APL, and our user
(and many others) went away very happy.

What made things even better was that the work
had benefit for all inner products, not just the
Boolean ones. The standard+.« now ran 2.5 – 3
times faster than Fortran. The cost of inner products
which required type conversion of the left argument

4This algorithm was an outgrowth of an early non-Boolean
algorithm used in CDC STAR-100 APL, probably due to Mike
Grimm.
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ran considerably faster, because those elements were
only fetched once, rather than N times. All array ac-
cesses were now stride one, which improved cache
hit ratios, and so on. So, rather than merely speed-
ing up one library subroutine, we sped up a whole
family of hundreds of such routines (even those that
had never been used yet!), with no more effort than
would have been required for one.

Similarly, supercomputer techniques, such as
block algorithms, for speeding up matrix product are,
by and large, applicable to a much wider range of
problems than generally thought. Use of APL makes
high-performance solutions to those problems imme-
diately accessible to all users.

As noted elsewhere, the algorithms underlying
such critical functions are invariably tuned to a spe-
cific host. The benefits of keeping the algorithms and
their tweaking out of the application should be obvi-
ous. Portability and performance suffer. Indeed, this
was one of the justifications for the creation of the
Basic Linear Algebra Subprograms (BLAS):

. . . general agreement on standard names
and parameter lists for some of these
basic operations . . . would add the addi-
tional benefit ofportability with efficiency
. . . [LHKK79]

The same article also presents a cogent argument
for use of APL, although it is aimed at promoting the
BLAS:

It can serve as a conceptual aid . . . to re-
gard an operation such as the dot product
as a basic building block. . . It improves the
self-documenting quality of code to iden-
tify an operation such as the dot product
by a unique mnemonic name.

5 Performance and the BLAS

The Basic Linear Algebra Subprograms (BLAS) are
a set of Fortran-callable subroutines which perform
operations which are commonly required in high-
performance computation. They are typically highly
tuned to specific architectures in order to obtain max-
imum performance on each host.

BLAS are categorized according to their compu-
tational complexity. Some of the level-3 BLAS and
the APL expressions which correspond to their defi-
nitions are [DDHD90]:

C αAB+βC Cû(α«A+.«B)+β«C
C αATB+βC Cû(α«(ôA)+.«B)+β«C
C αABT +βC Cû(α«A+.«ôB)+β«C
C αATBT +βC Cû(α«(ôA)+.«ôB)+β«C

Other BLAS are harder to describe as simple
APL expressions, because they involve operations
on symmetric or triangular arrays. Such BLAS are
properly considered as applications, since they make
assumptions about characteristics of arrays which
are not a part of most computer languages.

However, even with such limitations, techniques
such asarray morphology[Ber93a], offer the po-
tential for discovering and propagating such infor-
mation in APL. Array morphology is the study of
the array properties in array-based languages. Char-
acteristics of arrays may be deduced from algebraic
identities and properties, such as that the sum of an
array and its transpose is symmetric. The semantic
level of APL is high enough that detection ofBT +B
is easy. APL interpreters often use pattern match-
ing techniques to find such phrases in APL, often
calledidioms, and interpret them with code tuned to
handle such special cases efficiently. Perlis offers a
number of insightful examples of what he calls mini-
operations [Per79], many of which are detected by
APL interpreters. His brief paper is well worth read-
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ing as an introduction to the power of the language.
Assertionsare another way to specify array char-

acteristics [Ber93a]. Asserting that an array is sym-
metric could allow a compiler to produce appropriate
code for its manipulation. For example, the trans-
pose of such an array would be treated as an identity,
and would generate no code.

Even with such techniques, I doubt if raw APL
will be able to compete favorably with all of
the BLAS, which are traditionally hand-coded to
squeeze the last bit of performance from a system,
just as raw Fortran cannot compete favorably with
the BLAS. Many of the BLAS appear to be appli-
cations more than they are subprograms, and their
complexity cannot be dealt with by such trivial ex-
pressions, even in APL. Of course, an idiom recog-
nizer could easily interface to the BLAS, but that’s
not the point.

APL can compete favorably with the BLAS when
we run into the Procrustean nature of the BLAS –
if your application does not fit the BLAS definition
precisely, you are out of luck. For example, when ap-
plied to complex numbersxj + iy j, theSASUMfunc-
tion computesj xj j + j yj j instead of(x2

j + y2
j )

1=2.
Having a high-performance version of a function you
can not use is of little value. By offering excellent,
but perhaps not quite ultimate, performance on such
simple expressions, APL can meet the needs of the
majority of users who need something a bit out of the
ordinary.

Finally, the BLAS leave the bulk of the effort in
porting to different architectures to the user. In a dis-
cussion of block updates, Daye`e and Duff [DD90]
suggest the use of

. . . JIK-SDOT for short vector length ar-
chitectures . . .and KJI-SAXPY for all
other cases.

What this means is that the user has to tinker with the
application when porting it to a machine with a dif-

ferent architecture. This is akin to swapping the posi-
tions of the accelerator and brake when moving from
a 4-cylinder automobile to a V-8. The redesigned in-
ner product algorithms discussed earlier dynamically
pick an algorithm based on the relative sizes of the
arguments, their types, available storage, and sev-
eral other parameters. Surely, such choices should
be made automatically and should not devolve to the
user.

6 The Potential for Parallelism

The most important aspect of APL and J as they re-
late to large scale computation is the amount of par-
allel computation which is inherent in the notation.
Both APL and J possess considerable parallelism at
a number of semantic levels, including:

� Primitive verbs

� Adverbs

� Expression

� Phrasal forms (J)

� Defined functions

� Cells and frames (J and certain APL dialects)

� Composition (J and certain APL dialects)

� Tacit definition (J)

� Gerunds

Parallelism can be exploited concurrently at all of
these levels. As will be shown in a later section,
synchronization and communication among parallel
processes is largely inherent, and the programmer
can avoid thinking about those problems. The fol-
lowing section briefly discusses the parallel proper-
ties of APL and J. It expands on a recent article by
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Willhoft [Wil91], which limits itself to APL2 and
does not discuss expressions or verb trains.

A detailed study of all of the capabilities of APL
and J is beyond the scope of this paper. The follow-
ing sections will merely offer a few examples from
each class where parallelism can be exploited.

6.1 Primitive verbs

APL possesses a rich set of primitive verbs (func-
tions) which are inherently parallel in nature. They
may be categorized by the shape of the arrays to
which they naturally apply, as rank-0, rank-1, rank-2,
and so on.

6.1.1 Scalar or rank-0 Verbs

Rank-0 verbs, the so-calledscalar functions, obtain
their name from their characteristic of independent
operation on each scalar element of their argument
array(s). Figure 1 shows the operations which are
in both APL and J as scalar verbs. Fortran 90 has
included some of these scalar verbs in itsnumeric
functionsandmathematical functions.

A scalar verb applies independently to each ele-
ment of its argument. That is, there is no communi-
cation required among the elements. For example:

1 2 3<4 2 0
1 0 0

Thus, all scalar verbs represent instances of fine-
grain parallelism, which means they are simple to
implement efficiently on vector or parallel machines.
Expressions consisting of these verbs can exploit the
chainingcapabilities of vector architectures and data
distribution on SIMD or MIMD machines.

Symbol Meaning
APL J Monadic Dyadic
+ + Conjugate Add
- - Negate Subtract
« * Signum Multiply
ß % 1 Divided by Divide
* ^ ey xy

ð ^. Basee log y Base x log y
Ä <. Floor Minimum
Ó >. Ceiling Maximum
< < Less than
¤ <: Less or

equal
= = Equal
¦ >: Greater or equal
> > Greater than
© +. Logical or
^ *. Logical and
¹ +: Logical nor
° *: Logical nand
~ ~ Logical not
Ï o. π«y sin, cos, etc.
? ? Roll Deal
Í | Absolute value Modulus

Figure 1: Scalar verbs in APL and J
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6.1.2 Non-scalar verbs

Non-scalar verbs are primarily used for selection,
structuring, and searching operations. By defini-
tion, they are defined on array structures larger than
scalars, so it is natural to seek parallelism in them.
Since space prohibits a full analysis of them, only
two examples are presented. Willhoft offers a fuller
discussion of the topic.

APL contains two sort-related verbs,upgradeand
downgrade. They return a permutation vector for
the argument which, if used to index subarrays, will
bring the argument array into increasing or decreas-
ing sorted order, respectively. Since the literature on
parallel sorting [Lei92, Sto87] is extensive, it will not
be discussed here, other than to note that the effort
required to parallelize or vectorize a sort in APL is
trivial, because all the required information is imme-
diately at hand.

A simple example of the power of APL is exem-
plified by two versions of a convolution verb,5 due
to George Moeckel of Mobil Research. The first uses
the non-scalarrotateverb (÷) to skew the result of the
outer product before reduction. The second uses ro-
tate to generate skewed versions of the filter/wavelet
before performing an inner product with the trace:

rûwz conv tr;npad;h
hûwzÊ.«tr,(npadû(Òwz)-1)Ò0
rû(Òtr)Ù+¯(0,-Énpad)÷h

rûwz convo tr;npad;h;n
hûtr,(npadû(nûÒwz)-1)Ò0
rû(Òtr)Ùwz+.«(0,-Énpad)÷(n,Òh)Òh

5Bob Smith, now of Qualitas,Inc, designed a convolution
conjunction for APL [Smi81], noting that its “applications
include polynomial multiplication, substring searching, and
weighted moving averages.” A well-implemented version of
such a conjunction would be a worthy addition to J and APL.

With the use of the rank adverb, these verbs can
be simplified. For example, the expression:
(0,-Énpad)÷(n,Òh)Òh

may be written as(0,-Énpad)÷ê0 1 h.
That is, use each scalar on the left (the integers

0,1,2. . . n-1) as the rotation amount for the fil-
ter. Since there is only one filter, it is reused and the
result is a table ofn rotated filters.

In a naively implemented environment, this use of
rank will reduce processor and storage requirements
for the skewed filter by half. In a more sophisticated
environment using dragalong [Abr70], the genera-
tion of the skewed filter could be avoided entirely.

The potential for parallelism here is considerable.
There is no interplay via side effects among the ar-
rays, and the computation neatly decomposes into a
separate computation for each result element.

6.2 Rank, Cells, and frames

The concept of function rank is fundamental to array
parallelism in APL. Therank of a verb specifies the
number of axes in the arrays to which the verb natu-
rally applies. For example, addition (x+y ) is defined
on scalars adding to scalars, so is rank 0 0. Matrix in-
verse (%.y ) is defined on tables (matrices), so is rank
2. Rotate (x|.y ), or end-around shift, is defined on
a scalar left argument, which specifies the number of
positions to be rotated, and a list or vector right ar-
gument to be rotated, so rotate is rank 0 1. Since the
ravel verb makes its entire argument into a list, it is
classified as rank∞.

Operation of a rank-k verb upon arrays of higher
rank than k is defined asindependentapplication of
the verb to each rank-k subarray of the argument,
with the final result being formed by laminating the
individual results. There is no specified temporal or-
dering, so side effects can not be depended on. Data
dependencies simply do not exist.

Consider a few examples of how this works in
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practice on an arrayx whose shape ($x ) is 2 3 5 4 .
Matrix inverse applies independently to each of the
six (2 by 3) cells of shape5 4 to produce a result of
shape2 3 4 5 :

$%.x
2 3 4 5

That is, each inverse produces a result of shape
4 5, and the six of them are laminated into the 2 by
3 frame.

The determinant produces a rank-0 scalar for each
result from a rank-2 argument, so their lamination
produces a result array which is of shape2 3, be-
cause the scalars do not contribute to the result shape.

Fortran 90 has the same effect as APL on scalar
functions, but because Fortran 90’s semantics are not
generalized to the entire language, its applicability
is limited. It also complicates the semantics of the
remainder of the language.

Extensionoccurs when one argument to a dyadic
verb is of the same rank or less than the defined rank
of the verb. That argument is extended by reusing
it as many times as needed. For example, the ex-
pression2 2 2+2 3 4 and the extended expression
2+2 3 4 both produce4 5 6 .

Extension has even greater power when combined
with adverbs or conjunctions, as will be shown later.

The concept of function rank has considerable
value. It is:

� a conceptual tool to guide our thinking about
algorithms,

� a design framework to assist in language design
decisions, and

� a powerful way to express SPMD parallelism in
a concise and uniform fashion.

Although all verbs have a defined rank, it is often
convenient to alter that rank to meet the needs of spe-

cific algorithms. This is done with the rank adverb,
to be discussed shortly.

6.3 Adverbs and Conjunctions

As noted earlier, adverbs and conjunctions are a cen-
tral factor in APL’s power as an algorithmic nota-
tion. They allow one to concentrate on the problem
at hand without getting bogged down in detail. In a
sense, they are macros which allow the user to fill in
the blanks for a specific computation. For example,
in the inner product, the user specifies the combining
and reducing verbs, while the control structure used
remains unchanged.

6.3.1 Insertion and Scan

In reduceor insert, the user specifies a verb to be
inserted among the subarrays of the argument, and
then evaluated. This produces a wide range of useful
functions, including the summation, product, maxi-
mum, minimum, all, any, and count of Fortran 90, as
well many that are not present in Fortran 90.

Thescanadverb, often called aparallel prefixop-
eration, has immense power, particularly on numeric
and Boolean arguments. Scan is defined as produc-
ing the partial reductions on an argument. For exam-
ple, the sum scan produces:

tbl
2 3 4 5
1 1 1 1
9 2 0.5 10

+\tbl
2 5 9 14
1 2 3 4
9 11 11.5 21.5

Boolean scans have such significant value that a
number of articles have been written on them alone.
For example, not-equal scan can be used to locate
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quoted strings in text (with the help of the= verb to
locate the quotes and generate the required Boolean).

6.3.2 The Recurrence Relation

Recurrence relations are often trivially expressible
in terms of scan. A recurrence relation is a relation
among the elements of a list or vector such that the
following holds:

seq[i] = add[i]+mpy[i]*seq[i-1]

Until recently, the recurrence relation was gener-
ally considered “non-vectorizable” by compiler writ-
ers for vector machines. Back in 1971 or earlier,
APLers had not been told this was impossible, so
they began writing the recurrence relation as:

t«+\addßtû«\mpy

John Heckman created user-defined functions to
perform a number of scans in APL, which did the job
in log2n iterations. His algorithm was extremely fast
and worked on arrays as it does on lists, so many cal-
culations of mortgage payments, etc., could be made
at once. The potential for parallelism was obvious.
The scan adverb entered APL as a primitive in 1973.

6.3.3 The Rank Adverb

The rank adverb ("k ) permits customization of a
primitive, derived, or defined verb to operate on ar-
rays of rankk. Consider the humble+. Operating in
isolation, it can only add array to array or scalar to
array. But working in conjunction with rank, it can
do much more. Here it is used to add a list to each
row of a matrix:

100 200 300+"(1) 2 3$0 1 2 3 4 5
100 201 302
103 204 305

Rank is applying addition toeach rank-1 subarray
of both arguments. Since there is only one left ar-
gument(100 200 300) , it is extended and added to
both rows of the right argument.

100 200+"(0 1) 2 3$0 1 2 3 4 5
100 101 102
203 204 205

This picks rank-0 elements from the left argument,
and rank-1 subarrays from the right argument. In this
case, there are two cells in the left argument, and
two in the right, so no extension occurs at the rank
level. However, extension does occur at the level of
the scalar verb, when100 is added to0 1 2 .

The use of upgrade with rank has some interest-
ing applications. For example, consider the task of
determining which words in a table are anagrams
of one another, a problem posed by Jon Bentley
[Ben83a, Ben83b]. This can be done in J or APL in
a few characters, with no explicit iteration [Ber87].
The key to an elegant solution is combining a sorting
verb, upgrade, with rank, to grade each name inde-
pendently. In J, this is done as/:"1 . This results in
as many sort operations as there are words in the list,
and each of those sorts may be itself parallelized. To
be fair, the amount of parallelism obtainable in sort-
ing the characters in a single word is small, but the
point is that there is significant parallelism even in a
4-character expression.

6.4 Expressions

For reasons of comprehension, maintenance, and
simplicity, APL programs are usually written as ap-
plicative functions. It is, therefore, enlightening
to view them from that perspective in order to de-
termine what level of parallelism and other high-
performance computing benefits might exist within
them.
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The following discussion assumes, for simplicity,
that embedded assignment in mid-expression is not
used. Although treatment of such assignments only
slightly complicates the analysis, it is beyond the
scope of this introduction to the topic.

Consider that expressions are formed by combin-
ing nouns (1 2 3.5 4j3 ), pronouns (X, foo, dx ),
verbs (+,-,*,# ), and adverbs and conjunctions (/,
\, ", . ) in syntactically and semantically mean-
ingful ways. For example:

((a+b)*d)%(|:foo e)-f ^g

That is, the sum ofa andb is multiplied byd, that
result is divided by the result of the transpose offoo
applied toe minusf raised to theg power. The lin-
ear progression of the computation does not imme-
diately suggest that any parallelism is present.

In fact, there are two types of parallel behavior
within the expression which may be exploited con-
currently or separately:

� parenthetical parallelism

� chainingof partial results, orloop jamming.

In expressions like the above example, it is ob-
vious by inspection that computation of all of the
innermost parenthesized expressions can proceed in
parallel. That is, the computation of(a+b) can oc-
cur at the same time that(|: foo e) is being com-
puted. In practice, care must be taken to ensure that
side effects within called functions, such asfoo , or
mid-expression assignment6 do not alter the seman-
tics of the expression. Since we assume that func-
tional programming style is being observed, this will
not happen.

Since these parenthesized computations typically
operate on entire arrays, and sincefoo may represent

6Hence its omission in this brief treatment.

an large amount of computation, itself amenable to
all the forms of parallelism presented here, there may
be substantial benefit to seeking parallelism at the
expression level.

Furthermore, if the expression is fully parenthe-
sized to reveal its order of evaluation, even more par-
allelism becomes evident:

(((a+b)*d)%((|:foo e)-(f ^g)))

It is now clear that the computation of(f ^g) can
also occur in parallel. Once these innermost paren-
thesized expressions complete, producing temporary
array results, we are left with:

(T1*d)%(T2-T3)

Repeating the parallelize-the-innermost-
expressions process, we see that(T1*d) can
proceed in parallel with(T2-T3) .

It is now fairly obvious that, at any stage in the
evaluation of an expression, there are as many paral-
lel execution threads as there are innermost expres-
sions in the fully parenthesized expression.

Chaining, or loop jamming, offers the potential for
parallelism over a different axis. In scalar languages,
the computation of((a+b)*d) would probably be
written as:

do i=1,n
T1(i)= (a(i)+b(i))*d(i)
enddo

rather than as:

do i=1,n
T1(i)= a(i)+b(i)
enddo
do j=1,n
T2(j)= T1(j)*d(j)
enddo
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Although code sequences such as the latter are
rarely written directly, they do arise out of program-
generated code and out of compiler-induced opti-
mizations. Therefore, compilers routinely perform
loop jamming to reduce them to a form such as:

do i=1,n
TMP= a(i)+b(i)
T1(i)= TMP*d(i)
enddo

A similar form is also used by some vector super-
computers, notably the Cray X-MP, tochaintogether
vector operations, so as to overlap their computation
across several functional units, and to reduce the bot-
tleneck of traffic between main store and the registers
where computation actually occurs.

Static analysis of APL functions permits similar
optimizations to take place at the expression level,
merging a sequence of primitive functions on arrays
into an interleaved execution on subsets of the ar-
rays. This merging makes the expressions amenable
to optimized execution by techniques such as vec-
torization, parallelization, and strip mining. IBM’s
APL2 interpreter for the IBM 3090 Vector Facility
performs loop merging, although the documentation
[MM89] is vague about the extent to which it is ac-
tually done.

Loop jamming has the potential for significant
performance in an interpretive environment, because
it reduces the load/store traffic associated with array-
valued temps, as well as eliminating the storage
management overhead associated with each jammed
primitive. This has the desirable effect of reducing
N1=2 for the interpreter. [HP90]7 Large N1=2 val-
ues are the well-founded basis for interpreted APL’s

7N1=2 is a measure of the minimum number of elements re-
quired in an array computation for the computer to achieve half
of its peak performance on that computation. SinceN1=2 is ef-
fectively a measure of the “0 – 60 time” for a system, the smaller
it is, the better.

reputation of being slow for iterative computation on
scalars and small arrays.

6.5 Phrasal forms

Phrasal forms include the fork and hook discussed
previously. Since their utility from the standpoint
of parallelism is obvious, they are not discussed fur-
ther here. More information on phrasal forms can
be found in McDonnell and Iverson [MI89] and in
McIntyre [McI91].

6.6 User-defined Functions

User-defined functions are APL’s cognate of func-
tions and subroutines in other languages, and are the
primary method used to create non-trivial applica-
tions in APL. Like other languages, control flow in
user-defined functions is sequential and appears, in
isolation, to be inherently non-parallel. Of course,
since user-defined functions may utilize all the forms
of expression discussed in this section, there is con-
siderable potential for parallelism within each sen-
tence of APL. In spite of the apparent plodding na-
ture of sequential control flow, there are two ways in
which APL functions may exhibit parallel behavior:

� SPMD computation at the function level

� concurrent inter-line computation

SPMD computation occurs when the function is
invoked multiple times by an adverbial expression.
The two most common forms of this invocation are
through therank adverb and through theundercon-
junction, of which the APL2eachadverb is a special
case.

Consider a functionp that solves Poisson’s equa-
tion using any of several techniques, such as Jacobi
or Gauss-Seidel iteration on a 2-d grid. How can this
be applied to several independent sets of data? Three
ways come to mind:
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� Modify the function to accept a rank 3, rather
than rank 2, argument, and make it explicitly
handle multiple sets:p d3

� Use the rank adverb("k) to explicitly apply the
function to the rank 2 tables of a higher rank
argument:p"2 d3

� Use the under conjunction (&.) to apply
the function to each of an array of tables:
p&.> d2a;d2b;d2c

Each of these techniques has its own set of ad-
vantages and disadvantages. The first one obviously
requires a perhaps non-trivial amount of program-
ming effort. Both the first and the second require all
sets of data to be the same shape. The third may be,
with current interpreters, slower or more of a storage
hog than the first two approaches. Thus, choice of a
method depends in part on the set of problems being
solved, and partly on taste.

The first may or may not exhibit more parallelism
than the last two, depending on how the code is writ-
ten. If it were to iterate over all sets until all had
stabilized, then toward the end, it would be wasting
effort on the sets which had already stabilized. On
a machine with a large amount of fine-grain paral-
lelism, this might not make much difference. The
latter two are more appropriate for large-grain par-
allelism, since they decompose the problem into a
series of logically independent, fairly large compu-
tations, which may all proceed concurrently.

Inter-line parallelism is essentially the same form
of parallelism which exists at the expression level,
except that the analysis extends across sentences.
Unlike the naive form of expression level parallelism
discussed above, this form must take assignment and
other side effects into account, if semantics are to be
preserved properly. Since the essentials of inter-line
and expression level parallelism are much the same,
no further discussion of it will take place here.

6.7 Composition

Composition in J and the SHARP APL dialect of
APL offers significant computational power [Ber87,
BI80]. Unlike composition in mathematics, which
does little more than to glue functions together, com-
position in APL also glues together the intermediate
results. APL requires that the result of any compu-
tation be a rectangular array. There are ways of get-
ting around this, by use of recursive data structures
or indirection, but they are sometimes inconvenient
or messy.

Consider composition in J, denoted as&, combin-
ing two verbs,f and g. The composition applies
g to each cell of the argument(s) as determined by
g. The result of each cellular computation fromg is
then passed tof , without the requirement that each
result fromg be of the same shape. Effectively, such
composition lets uspipelinearrays from verb to verb,
offering considerable convenience as well as a great
deal of MIMD parallelism: Each cell can be com-
puted independently in any of the composed verbs.
Unlike the pipes of operating systems, which only
support a single character vector, these pipes are ar-
rays of arbitrary type, rank, and shape.

6.8 Tacit definition

Tacit definition is an extension of phrasal forms and
functional programming, in which variable names do
not appear [HIM91]. Hence, issues of liveness of
variables do not arise, and the compilation task is
simplified in that regard.

Donald McIntyre’s delightful history of mathe-
matical notation includes a presentation of eight
statistical functions in traditional and tacit form
[McI91].
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6.9 Gerunds

In natural language, a gerund is the noun form of
a verb. For example, in the phrase,programming
is an art, the verbto program is a gerund. In J,
a gerund is an array which represents one or more
verbs. Gerunds are manipulated identically to any
other data in J. For example, IF/THEN/ELSE can be
interpreted as using the Boolean value resulting from
the conditional to index a two-element gerund, and
then applying the selected element to an appropriate
argument. Gerunds were introduced into J as a way
to offer a rich set of capabilities including:

� MIMD computation

� control structures including generalized
if/then/else, case, do while, etc.

� first-class treatment of verbs

More information on gerunds may be found in
Bernecky and Hui [BH91] and in Iverson[Ive96,
Ive91]. Background material may be found in Ber-
necky’s early work on function arrays[Ber84].

First-classness is not of great relevance to this dis-
cussion, except inasmuch as it enables clean design
of other capabilities, by supporting computation on
functions as data. For example, arrays of verbs may
be created, manipulated as if they were data objects,
then a subset of them applied to data objects.

Control structures are important to high-
performance computing because they simplify
control flow analysis and data flow analysis. This in
turn permits generation of more efficient code and
enables vectorization and parallelization:

Loops without dependencies among their
iterations are a rich source of parallelism
in scientific code [HSF92].

Flow analysis in APL is even more important than
in other languages because APL does not have decla-
rations. Methods such as array morphology are only
now beginning to be used to optimize APL execu-
tion. Gerunds make APL more amenable to flow
analysis and simplify the generation of high quality,
efficient code.

Gerunds also offer the programmer a direct and
simple way to specify MIMD (Multiple-Instruction,
Multiple-Data) computations. There are several
ways to achieve MIMD, including agenda and inser-
tion of gerunds.

6.10 Parallelism Measurement Criteria

I have considered ways to measure the potential par-
allelism of an entire APL application, but thus far,
have not come up with a simple, satisfying met-
ric which is not a function of an arbitrary number
of variables for any but the most trivial operations.
The ability to nest parallel structures within APL
makes the description of a program’s parallelism a
tree structure rather than a scalar.

7 Processes and Synchronization

As was shown previously, APL has the capability to
describe parallel computations on a variety of levels
without resort to processes, operating system charac-
teristics, process creation, synchronization, process
destruction, etc.

Although these nuts-and-bolts aspects of parallel
computing on today’s machines may or may not be
with us tomorrow, they certainly should not be em-
bedded in the description of algorithms.

The inherent parallelism of APL handles all of
the above requirements implicitly. It offers an em-
barrassment of riches from the standpoint of paral-
lelism. Unlike other languages, the problem in APL
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is not determining where parallelism exists. Rather,
it is to decide what to do with all of it.

8 Portability

As noted throughout this paper, the abstract nature of
a language such as APL has a significant impact on
the portability of applications created with it. Not
only are programs more portable than they would
be if assumptions about underlying data types and
representations were made, but the performance po-
tential of applications, particularly across wide ar-
chitectural boundaries, remains higher with abstract
languages than it does with low-level languages such
as Fortran.

9 Bugs

Notational consistency is an important aspect of APL
dialects. The language has a simple syntax, and con-
sistent semantics for both primitive and user-created
entities. This means that issues such as precedence,
a frequent cause of bugs in traditional languages, are
simply not an issue in APL.

As noted previously, the conciseness of APL also
contributes heavily to code reliability, as does the in-
herent preservation of type and shape information
with arrays. For example, in the APL model of a
loom [Ber86], there is one parameter – the tieup ma-
trix used to connect the foot treadles to the harness –
and two arguments: the threading, which specifies
which warp thread is connected to which harness,
and the treadling sequence actually used. The APL
code is entirely functional and clearly correct, con-
sisting of two index operations and an inner product.
Contrast this with the several pages of BASIC to per-
form the same task, in which there is so much bag-
gage that it is a challenge just to find the part of the
code which actually does the work!

APL’s inherent array-handling properties and
functional nature contribute to the reduction in ex-
plicitly coded variables representing array size, in-
duction variables, and so on. With less code and
fewer variables, fewer things can go wrong, produc-
ing a net increase in code reliability.

Although these aspects of APL do not heavily cor-
relate with supercomputer usage, they are nonethe-
less noteworthy as being features of the language
which help one to obtain correct answers from a
computer in a shorter timeframe than is otherwise
possible.

10 Clarity of Expression

The clarity of expression of ideas possible with APL
over that possible with languages such as Fortran
makes it easier to optimize algorithms and to gain
insight into problems. The performance of an APL
model of a loom was improved by a factor of twenty
in a short time, by virtue of the clarity of the algo-
rithm expressed in APL – the APL program con-
sisted of three verbs, whereas the same program writ-
ten in BASIC was more than two pages of code.

Conciseness works well with our short term mem-
ory – we can only deal with seven or eight symbols
or chunks of information at once, and APL, by con-
densing expression into a compact form, allows us to
grasp a larger portion of the problem at once.

This conciseness also has benefits for compilers,
because APL provides a larger amount of semantic
context from which to deduce properties of an al-
gorithm, and thereby produce improved, parallel, or
vectorized code.

The abstraction of APL makes it possible and de-
sirable to isolate architectural characteristics from al-
gorithms. This enhances portability, and increases
the clarity of the algorithm, by not cluttering it up
with details about the machine on which it happens
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to be running today.

11 Summary

APL has been shown to possess an immense amount
of parallel expression, providing a rich blend of
SIMD, MIMD, and SPMD capabilities. It does this
without compromise – there is no need to embed
machine characteristics within application programs.
This enhances portability.

APL’s richness of expression provides significant
semantic content for the compiler writer, which
makes generation of high-performance code an easy
task.

12 Additional Reading

Cann [Can92] offers a number of the same argu-
ments presented here, as well as concrete evidence,
in terms of benchmarks on non-trivial numerical pro-
grams, that applicative languages have the potential
to match or beat the performance of Fortran.

Willhoft’s article covers some of the same ground
as does this article. He concentrates on the se-
mantics of each primitive, to present its parallel na-
ture. He does not discuss parallelism at the expres-
sion or function level, nor does he discuss paral-
lelism of the sort expressible by phrasal forms or
gerunds (APL2 does not possess gerunds). Will-
hoft makes pragmatic measurements of the potential
parallelism present in a small number of APL appli-
cations, drawing conclusions which are in line with
those presented here.

Some of Willhoft’s recommendations for lan-
guage changes already exist in J, in the form of
gerunds to provide control structures and in the rank
adverb as an axis specifier. Sadly, parallelism in
the APL2eachadverb is said to be unachievable in
APL2 because it lacks the ability to specify that a

user-defined verb is free of side effects. This is a
design issue, which has been resolved in other sys-
tems by defining the behavior of the each adverb or
its cognate as having undefined application order on
its argument.
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