
11/06/05 Robert Bernecky Snake Island Research Inc

APEX APL Compiler Status

Robert Bernecky
Snake Island Research Inc

Toronto, Ontario
Canada

11/06/05 Robert Bernecky Snake Island Research Inc

Overview

● Potential Applications
● Introduction to APEX
● Supported Dialect & Features
● Performance
● Problem Areas
● Licensing
● Future Work
● Credits and Support
● Summary

11/06/05 Robert Bernecky Snake Island Research Inc

Potential Applications

● High-performance APL-based apps
● Application certification
● Packaged binaries (no APL run-time required)
● Cross-platform code (Mac, Linux, Solaris, Unix)
● Code obfuscation
● Application development for Digital Signal

Processors (DSP) & embedded systems

11/06/05 Robert Bernecky Snake Island Research Inc

Introduction to APEX

● A research compiler, designed to facilitate
exploration of array language optimizations
– Easy to extend/change

– Not yet production quality (like Windows...)

– Compile time not a major concern

● Parallel, multi-thread run-time support
● Runtime: Generates SAC->C for

Linux/Solaris/Mac (Old version was SISAL->C)
● APEX runs under APL+Unix

11/06/05 Robert Bernecky Snake Island Research Inc

SISAL vs. SAC

● Both are high-performance (faster than Fortran
or C!), parallel array languages

● SISAL is vector-of-vectors:
– Transpose transpose 5 0 reshape 0

● SAC is true array language
● SISAL: moribund: LLNL is building bombs

again
● SAC: Recovering from major SSA surgery –

many optimizations still disabled

11/06/05 Robert Bernecky Snake Island Research Inc

Supported Dialect

● Flat ISO APL (no nested arrays)
● No execute
● System function support via #pragmas, libraries

(E.g., GetFile)
● No goto (but does have :for)
● Some primitives not coded yet
● Some syntax rules not coded yet
● A few declarations required

11/06/05 Robert Bernecky Snake Island Research Inc

Language Extensions

● Familiar to SHARP APL & J users
● Extended take/drop, e.g.,

– 3 take matrix

● Cut conjunction
– Windowed and partitioned operations

● Rank conjunction – consistent and powerful
● Replicate, e.g.,

– 2 0 3 4 /'abcd' -> aacccdddd

11/06/05 Robert Bernecky Snake Island Research Inc

Almost Unique Features

● Compositions, e.g.,
– Monadic matrix product:

● mdot <-filter & +.*

● Monadic window-reduce, e.g.,
– Convolution:

● (rho filter) mdot / seismictrace

– String search
● (rho string) string&^.=/ text

11/06/05 Robert Bernecky Snake Island Research Inc

Performance and Correctness

● 85 benchmarks in test suite
– Today, 17 compile and execute correctly

– Some primitives missing (membership, scan, base
value...)

– At least one dataflow analysis bug, one SSA bug

– Function cloning not implemented yet

– As of last week, nothing compiled correctly...

● Performance OK, but not earthshaking
● Earthshaking to follow

11/06/05 Robert Bernecky Snake Island Research Inc

Earthshaking

– Performance vs interpreted APL
● Today: 0.5X->150X faster
● Tomorrow: One missing SAC optimization gives 12X

speedup on a slow benchmark
● Next month: up to 1000X faster

– Improved SAC compiler optimizations

– Improved APEX data-flow analysis

– Improved APEX run-time algorithms

– Automatic parallelism (SMT, MP, multi-core)

– One-bit Boolean support in SAC needed

11/06/05 Robert Bernecky Snake Island Research Inc

Application Certification via APEX

● Similar to materials testing in mechanical engi-
neering

● Static analysis of application code
– NO execution!

● All type domain errors detected ('X'+4)
● All rank errors detected
● Many length errors detected
● Some index errors detected

11/06/05 Robert Bernecky Snake Island Research Inc

Problem Areas

● Integer overflow
– 64-bit ints will help in practice

– Otherwise, use declarations

● Definition of “floor double”
– Is result double or int?

– If int, possible wrong answer

● Still need coercions
– How do I get “floor double” to coerce to integer?

● Efficient nested array support: NOT easy!

11/06/05 Robert Bernecky Snake Island Research Inc

Problem Areas

● Integer overflow
– 64-bit ints will help in practice

– Otherwise, use declarations

● Definition of “floor double”
– Is result double or int?

– If int, possible wrong answer

● Still need coercions
– How do I get “floor double” to coerce to integer?

● Nested array support: NOT easy!

11/06/05 Robert Bernecky Snake Island Research Inc

Licensing

● APEX available under GPL by year-end
● Or perhaps under “Lesser GPL” or GPL

2.0?
● Check www.snakeisland.com at month-end

for announcement
● FREE!
● Open source

http://www.snakeisland.com/

11/06/05 Robert Bernecky Snake Island Research Inc

Possible Development Model

● APEX/application consulting at $X/hour
● APEX consulting at 2/3 $X/hour if results are

GPL
● Volunteer or funded development

– Join in!

– Send money!

11/06/05 Robert Bernecky Snake Island Research Inc

What you can do

● Write primitives or speed them up
● Prototype language extensions
● Port to Windoze, PlayStation
● Write .net (sigh...) code generator
● Write DSP code generator
● Write 1-bit Boolean SAC support
● Create new optimizations (APEX, SAC)
● Send Money

11/06/05 Robert Bernecky Snake Island Research Inc

Future Work

● J dialect compiler, based on APEX principles
● System functions via pragmas & modules
● Nested arrays, structures (ala C)
● Support for Windows, .net
● Prototype advanced array optimizations
● Perform shape analysis research

11/06/05 Robert Bernecky Snake Island Research Inc

Future Work II

● Better application certification
– Function coloring (display of potential run-time in-

dex & length errors)

– Improved index error detection

– Improved length error detection

– Potential application to other languages

● Improved SAC compiler optimizations

11/06/05 Robert Bernecky Snake Island Research Inc

Credits & Support

● Walter Fil, Future Perfect
● Eric Baelen, John Walker, APL2000
● Sven-Bodo Scholz, U. Hartfordshire
● Other SAC developers (U. Lubeck, U. Hartford-

shire)

11/06/05 Robert Bernecky Snake Island Research Inc

Summary

● APEX – A good flat APL compiler
● Acceptable performance now
● Fantastic performance is on the way
● Automatic parallelization
● Application certification
● The end of the beginning (Thanks, Winston!)

