
ACORN: APL to C on Real Numbers�

Robert Bernecky
Snake Island Research Inc

18 Fifth Street, Ward’s Island
Toronto, Ontario M5J 2B9

Canada
(416) 203-0854

bernecky@acm.org

Charles Brenner
2300 Grand Canal

Venice California 90291
USA

(213) 827-7009

Stephen B. Jaffe
Mobil Research and Development Corp.

Paulsboro Research Laboratory
Paulsboro, New Jersey 08066

USA

George P. Moeckel
Mobil Research and Development Corp.

Dallas Research Laboratory
13777 Midway Road
Dallas, Texas 75234

USA
(214)851-8702

1 Introduction

Abstract

A prototype APL to C compiler (ACORN: APL to
C On Real Numbers) was produced while investigat-
ing improved tools for solving numerically intensive
problems on supercomputers. ACORN currently
produces code which runs slower than hand-coded
Cray FORTRAN, but we have identified the major
performance bottlenecks, and believe we know how
to remove them. Although created in a short time on
a limited budget, and intended only as a proof of the
feasibility of compiling APL for numerically inten-
sive environments, ACORN has shown that straight-

�This paper originally appeared in the APL90 Conference
Proceedings. [BBJM90]

forward compiled APL will be able to compete with
hand-optimized FORTRAN in many common super-
computer applications.

2 Background

Supercomputers are an expensive resource: they are
costly, and require highly trained expert program-
mers to make effective use of them. In a research
environment, this can be deadly – today, researchers
with expertise in disciplines such as geophysics are
dependent on those experts to solve their problems.
In many environments, this can lead to bottlenecks
and delays – a researcher wishing to model behav-
ior of some system may have to wait months before
an expert is available; alternately, he or she may be
forced to write a model in ignorance, perhaps suf-

1



fering one or more orders of magnitude performance
degradation. When studying large problems, whose
solutions may take at best hours, the spectre of days
or weeks of processor time is daunting.

A language such as APL offers a possible solu-
tion. APL is an abstract language, in which you de-
scribe what you want done, not how to do it. The
“how” decision is left to the computer or compiler
writer. For example, the sum of a list of numbers,
n, is written in APL as+/n, whereas scalar-oriented
languages require the programmer to write a loop.
As well, the performance of semantically deficient
languages such as FORTRAN and C have tradition-
ally been sensitive to the way expressions are writ-
ten – interchanging two loops might make a dramatic
difference in the performance of a program.

Because APL tends to bury loops within prim-
itive expressions, loop interchange and other
performance-related transformations can be made
automatically and dynamically beneath the level of
user visibility. This can simplify the user’s pro-
gram – detailed concerns about machine dependen-
cies need not appear as explicit source code. This
increases the portability of the program, when mea-
sured in terms of program efficiency on a number of
machine architectures.

Architectural dependencies also affect perfor-
mance, making one construct of loop faster on one
system and slower on another. These dependencies
hinder code portability. By hiding loops and other
superfluous details, APL allows the programmer to
rise above these concerns and concentrate on the
essence of the problem at hand. The compiler writer
can create optimal code for the specific target archi-
tecture, producing more efficient code than the aver-
age programmer is capable of providing.

The advanced semantics of APL offer another
benefit. By providing primitive capabilities such as
set membership, the programmer is freed from the
problem of writing an efficient set membership func-

tion for a particular machine – the job is already
done, and done well by a professional programmer.
This may seem a trivial matter, but efficient meth-
ods for performing commonly required operations
such as sorting, matrix product, and set membership
differ dramatically from one machine architecture to
another. Failure to describe these operations in an
abstract manner cripples attempts to write portable,
efficient applications.

Discussions with Stephen Jaffe and George
Moeckel of the Dallas Research Laboratory of Mo-
bil Research and Development Corporation (MRDC)
led to a joint research project between MRDC and
I.P. Sharp Associates Limited (IPSA), to studythe
use of APL as a delivery vehicle for parallel compu-
tation.

The basic question we have tried to answer in this
project is:

Can a naive APL compiler produce code of suf-
ficient performance and reliability to qualify it as a
practical tool for solving numerically intensive prob-
lems?

We chose APL because of its outstanding track
record as a prototyping and modelling tool, and
its effectiveness in conceptualizing and formulating
logic. [Ber86, Yos86] In addition, APL’s advanced
semantics allow it to take advantage of state of the
art SIMD and MIMD computers now appearing on
the scene, without requiring programmers to change
their programming styles.

We felt that a naive APL compiler that performed
little or no classical optimizations might, because of
the powerful semantics of APL, provide adequate
performance for a number of applications. There
were two ways in which we thought this might oc-
cur; these are outlined below.

� A compiler performs syntax analysis once,
rather than continuously, as an APL interpreter
must do. Since syntax analysis often represents

2



10-30% of the entire processor time associated
with an interpreted APL application, there are
gains to be made here. The applications which
suffer most from syntax analyzer overhead are
those which are highly iterative or recursive,
and in which the arrays being processed are
very small.

� Large, numerically intensive computations of
the type which are common in supercomputer
applications often spend a large amount of time
executing what in APL are single primitives,
such as inner product, outer product, and ma-
trix inversion. A compiler which merely opti-
mized the run-time library for these primitives
would obtain many of the speedups available in
a highly optimized compiler for a language with
more primitive semantics, such as FORTRAN,
where the code for commonly used functions
such as matrix problems are spread across a
large number of primitive operations.

The original project specified hand-compilation of
a few seismic applications into Cray FORTRAN or
assembler code. We quickly abandoned assembler
as being non-portable and non-productive. When we
heard about the availability of the C language on the
Cray, we decided to compile to C instead.

C, often considered a generic assembler code, of-
fers a number of desirable facilities such as portabil-
ity, simplicity, and relatively good performance. In
addition, C is a more functional language than FOR-
TRAN, so the mapping from APL to C was a fairly
obvious and straightforward design problem.

Early in the study, we obtained a copy of Timo-
thy Budd’s APL to C compiler. [BT82, Bud83] This
university-developed compiler is available without
license fee, and we thought it might be a quick so-
lution to our problem. Jiri Dvorak, of the IPSA APL
Systems Development Department, spent some time

attempting to make the compiler work, but found that
the compiler was not robust enough for our use, and
we dropped it.

One of us (Bernecky) started to hand-code the
translated APL, but the tedium of the job quickly
convinced us that writing a translator was less ef-
fort. We therefore decided to write our own compiler.
Bernecky and Charles Brenner (an independent con-
sultant under contract to IPSA) then developed a pro-
totype compiler, dubbed ACORNAPL to C on Real
Numbers, which we feel demonstrates both the fea-
sibility of, and problems associated with, compiling
a subset of ISO APL for supercomputers. [Int84]
Bernecky wrote the tokenizer, syntax analyzer, and
code generator in SHARP APL/PC. Brenner wrote
the initial run-time library in C. Jaffe and Moeckel
provided a suite of seismic applications, written in
APL, which served as our benchmarks.

3 Other APL Compilers

A number of attempts have been made to pro-
duce APL compilers. Stephen Crouch, of the I.P.
Sharp Network Development Department, devel-
oped a compiler in 1981-1984 with restrictions sim-
ilar to those of ACORN, which was used to produce
code for the Computer Automation Alpha/LSI mini-
computers then in use as IPSANET node computers.
[Cro84]

The Budd and Sofremi compilers generate C code
as their output. [Bud83, Gui87, GW78]

STSC’s APL compiler compiles APL to 370 ma-
chine code. [Wie79, Wei85] Two IBM compilers
are research projects; however, detailed information
about their performance or internals, beyond that de-
scribed in the above-cited papers, is currently un-
available. [GCDO87, CX87, WS81]

The Driscoll and Orth compiler generates FOR-
TRAN as its output; Ching’s compiler generates 370

3



machine code.
One underlying assumption is that these problems

are computationally dominated by non-linear com-
putations such as matrix divide, inner product, and
outer product on large arrays. Such problems lend
themselves well to APL, and a compiler that doesn’t
perform classical optimizations should perform at an
adequate level. Of course, an optimizing APL com-
piler (OAK?) might make things even better, but that
was beyond the scope of this research project.

4 Compiler Overview

ACORN’s input is the canonical representation of
an APL function, or the name of an APL function
in the acorn workspace. Its character matrix re-
sult is a C function corresponding to the input func-
tion. The cover functioncompile performs the ad-
ditional work required to place the resulting C source
code on a DOS file, in ASCII format.

The C functions created by ACORN have the fol-
lowing characteristics.

� APL labels and constants become static con-
stants in the C code.

� Functions called by the APL function are pre-
sumed to be C functions created by ACORN.

� APL locals become C locals, represented as C
structures which point into the C heap where
the actual array data is stored. The C structure
which represents APL arrays is described in the
C TYPEDEF VAR, contained in file APL.H.

� APL globals become C static globals, repre-
sented in the same way as APL locals.

� Each primitive function or user-defined func-
tion is compiled into a C function call to a run-
time library function, or to a compiled user-
defined function.

In the interest of simplicity, storage management
is left, as much as possible, to C. The inability to
compact the heap is a potential problems for certain
applications, although we have not yet had any prob-
lems in this area. If such problems do arise, then a
more sophisticated storage manager, which supports
compaction, may be required. This might also pro-
vide improved performance over C storage manage-
ment functions.

ACORN maintains a reference count and an ele-
ment count(«/Ò×) for arrays. Reference counts
allow several objects to refer to the same array with-
out physically copying the array. Element count is
frequently required by APL primitives; for example,
multiplicationneeds to know how many elements are
in the arrays to be multiplied.

Compile times on a 3090 class mainframe running
SHARP APL are under a second. On a PC/AT class
machine, under SHARP APL/PC, compile times are
roughly one minute per line of code. Because of the
prototypical nature of the work, no effort whatso-
ever was made to improve compilation performance.
However, an order of magnitude speedup is probably
achievable with a day or so of work.

5 Compiler Internals

The compiler consists of several phases, outlined be-
low.

� Tokenization: This determines the class of each
character in the function being compiled, and
produces a character matrix of the same shape
as the function’s display form, with a class type
for each character of the function. Failures dur-
ing tokenization usually indicate use of numer-
ics in names, use of quad (Ì), or use of character
constants in a function.

� Header analysis: This analyzes the function

4



header, and produces a C function header, lo-
cals declarations, and function prolog and epi-
log code.

� Syntax analysis: This is performed by a reduc-
tion analyzer, implemented as a finite state ma-
chine. Each action of the analyzer is performed
by a function namedfsmXY, whereX is the cur-
rent state of the analyzer, andY is the signal, or
token class, of the next character on the function
line being compiled.

� Label analysis: This extracts all labels defined
in the function, and produces code to define the
labels in the resulting C program.

� Constant analysis: This extracts all constants
from the function, generates C constants for
them, and replaces occurrences of all constants
with identified references to those constants.

� The compiler generates code for each line of
APL, rather than trying to compile the entire
function body in parallel. This was done to
avoid workspace full errors, as well as for sim-
plicity.

6 ACORN Features

ACORN offers a number of features not normally
found in other compiled languages.

� Function arguments and results have no fixed
limits on rank, shape, or number of elements.
This preserves the generality of APL behav-
ior, although it does have a performance im-
pact, particularly in areas such as arithmetic on
scalars.

� Because ACORN produces C source code as its
output, programs written in ACORN and C can
be integrated with relative ease.

7 ACORN Restrictions

Because the original scope of the project was to per-
form a feasibility study for compiled APL, funding
and time were limited. Therefore, in the interest of
simplicity and rapid implementation, a number of
restrictions were placed on the subset of ISO APL
which may be compiled.

Furthermore, the set of primitives which were im-
plemented, and the extent to which they were im-
plemented, were only those required for the suite of
seismic applications we were using as benchmarks.
Some of the primitives were only partially imple-
mented, because the applications didn’t require the
full function of the primitive.

The syntax analyzer is incomplete, which means
that a number of uncommon but legal APL expres-
sions (such asx+(y)) cause the compiler to fail.

� The only data type is floating point. This
eliminates the requirement to perform seman-
tic analysis, data flow analysis, and also hand-
ily sidesteps the issue of declarations. For many
numerically intensive problems, this restriction
appears to be a reasonable limitation, at least
initially. For workstation applications and more
general applications, it is clearly a showstopper.
It also causes performance problems, as noted
below.

� No character constants may be used. This is a
reflection of floating point being the only data
type.

� System variables and system functions are not
supported.

� Ìct is 0.

� Ìpp is 5.

� Ìio is 1.

5



The tables in Figure 1 and Figure 3 summarize the
facilities and limitations discussed above.

8 Findings

This section presents the most notable findings of the
project.

� The SHARP APL rank adverb (ê) and from
verb ({) proved to be effective tools in circum-
venting some performance problems present in
ISO APL. In particular, the NMO benchmark
originally used a defined function,index, to
perform scatter indexing of points from a ma-
trix. ISO APL is not very effective at such scat-
ter indexing, and a large amount of the NMO
CPU time was spent inindex. Rewriting the
index function as the SHARP APL expression
x{ê1 y made a dramatic improvement in per-
formance. Additional improvements could be
made in NMO by using the rank adverb with
multiplication and catenation. These changes
would simplify the APL code as well as reduce
the amount of superfluous data movement re-
quired.

� Use of static, rather than dynamic scoping,
dramatically simplified the problem, without
severely impacting practical applications. It al-
lowed independent compilation of each func-
tion, without requiring knowledge of the calling
tree.

� Although the Cray hardware supports compress
and compress-iota, Cray C does not appear to
provide any way of accessing those facilities.
It is possible that performance gains could be
made by writing Cray assembler code routines
to support these functions, once ACORN sup-
ports Boolean data as bits. Furthermore, in con-
trast to languages such as FORTRAN, APL’s

powerful semantics open an effective window
into the Cray hardware, without impacting ap-
plication portability.

� Use of reference count techniques for array
storage management produced significant per-
formance improvements, and reduced stor-
age requirements dramatically. These effects
are observable in interpreted APL, but are of
greater importance on the Cray XMP, because
of the Cray’s relatively slow main storage ac-
cess times.

� Use of the compiler across three machines is
a clerical nuisance: The compiler runs on a
PC/AT. The C source file it produces has to be
uploaded from the PC/AT to the VAX front-end,
and then transferred to the Cray for compila-
tion and execution. Cray job control and link-
edit statements for compiling and linking the C
programs on the Cray must be manually main-
tained. If the APL functions to be compiled re-
side on the VAX, they must be downloaded to
the PC/AT. A seamless, pleasant (“screamless”)
development environment is a priority item for
effective use of this technology. Adapting the
compiler to run on the VAX front end would be
a considerable improvement.

� Treatment of the niladic “main” function re-
quired by C programs is somewhat clumsy, be-
cause of C’s inability toaccept a direct argu-
ment to the “main’ program.

� Since ACORN produces code which consists
almost entirely of function calls to the run-time
library, we were initially concerned about the
overhead of C function calls. We found that on
the Cray, function call overhead was small, less
than one percent of the entire benchmark time,
and hence was not a serious problem.

6



� Another concern was whether or not C stor-
age management functions would perform well
enough to let us avoid having to develop a so-
phisticated storage manager based on storage
pooling. Our chief worry was that storage frag-
mentation would cause allocation of a large ar-
ray to fail, even though such space was avail-
able, but non-contiguous. In the interest of em-
piricism and simplicity, we adopted C storage
management functions without storage pool-
ing. This works adequately, as we have not
yet observed any storage management problems
which could be attributed to fragmentation.

� Introduction of “traditional” control structures,
such as DO, WHILE, IF/THEN/ELSE, would
improve the quality of code which could be
generated in a more sophisticated compiler. In
ACORN, the main observable effect of this
omission is generation of clumsier code to sup-
port branching than other control structures
would require.

9 ACORN Performance on Work-
stations

We initially used SUN 386i workstations and IBM
PCs as development and test platforms. Several
benchmarks were used to measure the performance
of the resulting compiled code on the SUN against
interpreted APL on the same machine. These are de-
scribed below.

� BENCHLOOP: A simple, scalar-oriented loop.
This is a typical example of code on which in-
terpreted APL usually performs poorly.

� ACK: Ackerman’s function, with arguments of
3 and 4. This heavily recursive function is a

good measure of the performance of defined
function call and scalar performance.

� NMO: This function is a seismic “normal move
out” application. It is numerically intensive,
using outer products, reductions and interpola-
tions, on large arrays.

� CONV: This function performs convolution on
vectors, using a reduction of an outer product
between the seismic trace and the rotated fil-
ter. Although we had two versions of convo-
lution, one using reduction of an outer product,
and one using inner product, we only timed the
outer product version. The APL function used
for convolution was:
Çrûwz conv tr;npad;h
[1] hûwzÊ.«tr,(npadû(Òwz)-1)Ò0
[2] rû(Òtr)Ù+¯(0,-Énpad)÷h
Ç

The following table displays the relative perfor-
mance, in CPU seconds, of some of the compiled
code on a SUN 386i, running SUN OS, compared to
the SAX APL interpreter on the same platform.

APPLICATION SAX ACORN
386i 386i

BENCHLOOP 10 56 11
3 ACK 4 34 10
NMO 33 16.5
CONV n/a n/a

10 ACORN Performance on CRAY
XMP

ACORN performance varies depending on the host
and the application. For the particular cases of
CONV and NMO on the Cray, ACORN produced
code which executed four and seven times slower
than hand-optimized FORTRAN on the Cray XMP,

7



respectively. In the timings in Figure 2, the CONV
timings are per element of the right argument, for the
filter size given. We attribute the performance differ-
ence to several factors, which are discussed in more
detail below.

� Cray C compiler inadequacy: The Cray C4.0
compiler does not optimize as well as the FOR-
TRAN compiler – a simple matrix product al-
gorithm written in C and FORTRAN took 40%
longer in C than in FORTRAN. Cray claims that
the next release (C5.0) of their C compiler will
share a common back-end with FORTRAN, and
hence should be able to generate code which
performs at least as well as FORTRAN.

� Lack of vectorized run-time library routines:
The C4.0 run-time library did not contain vec-
torized versions of square root (required by
4Ï×, floor, and residue. Cray claims that C5.0
will contain vectorized versions of these func-
tions.

� Lack of proper data type support: ACORN sup-
ports only double-precision floating point data.
This has the highly undesirable effect of requir-
ing type coercion of all values used for index-
ing. Our budget and time frame did not permit
us to successfully vectorize this coercion. This
resulted in severe degradation of NMO perfor-
mance.

� APL dialect: The APL dialect used in CONV
and NMO reflects APL language design as of
1970. Since then, a number of new capabilities,
such as the rank adverb, have come into the lan-
guage. These capabilities allow significant re-
duction in program complexity, and reduce the
amount of main store accesses required to per-
form many common operations, without sac-
rificing portability. However, even with these

improvements, APL tends to require additional
operations in order to set up arguments to al-
low direct use of inner product, and so on. In
CONV these contributed to a 19% overhead
which would not be required in FORTRAN.

� Unfamiliarity: Neither Bernecky nor Brenner
had any previous experience with Cray hard-
ware. It is likely that we were ignorant of ma-
chine characteristics which, had we exploited
(or avoided) them, may have resulted in im-
proved performance.

We believe that C compiler improvements and im-
proved vectorization should allow ACORN to per-
form comparably to FORTRAN. A properly de-
signed APL compiler, including data type support,
generating C code instead of run-time library calls,
should, because of APL’s advanced semantics, be
able to match or outperform FORTRAN in almost
any application. Particularly, these performance im-
provements should be apparent when the application
must be run on a variety of machine architectures,
which would forbid architecture-specific optimiza-
tions in the FORTRAN source program.

11 Performance Analysis of Convo-
lution

The performance of ACORN on convolution was
about one fourth as fast as hand-optimized, unrolled
FORTRAN on the Cray XMP. Although we did not
analyze the performance difference in detail, we at-
tribute much of the performance loss to extra storage
operations required by ACORN, compared to FOR-
TRAN. This is characteristic of a non-optimizing
APL interpreter or compiler, and is not likely to be
easily corrected in a compiler as naive as ACORN.

8



� The SHARP APL UNIX (SAX) tesselation ad-
verb could be used in conjunctionwith other ad-
verbs to describe the convolution algorithm in a
more terse fashion as:

(1,Òwz) 3ê(+.«¡wz) tr.

� The APL Dictionary describes these facilities.
[Ive87] Making effective use of this expression
would require significant redesign of ACORN,
but might fall out of a more sophisticated com-
piler.

12 Performance Analysis of NMO

The performance of NMO was limited by C compiler
restrictions, as well as by ACORN’s inability to gen-
erate integer data types. In ACORN, NMO ran about
one seventh the speed of hand-coded FORTRAN.

C4.0 run-time library’s lack of vectorized func-
tions for square root, coercion, floor, and residue
caused this performance problem, but we believe that
the next release of the Cray C compiler will resolve
this.

13 Summary

We believe that a production-quality APL compiler
will:

� provide researchers with a better tool of
thought,

� perform as well as FORTRAN and other more
traditional languages,

� provide researchers with a programming tool
which is portable withoutany changes among
disparate machine architectures, and

� allow researchers and software developers to
develop applications and models for supercom-
puters in a far shorter time frame than is possi-
ble with more primitive languages. This time
advantage offers a key market edge to those
who are designing new products with the aid of
supercomputers.

These characteristics will combine synergistically
to allow researchers whose major discipline may not
be computing to make far more effective use of com-
puters and their own time than they are able to do
today.

ACORN has opened the door into a realm of more
intelligent and effective use of supercomputers and
workstations, and has planted the seeds of further
development in that fertile area. Our next task is to
enter that realm, and cultivate its land, so that we
may reap the benefits of deeper understanding of our
world and universe.

14 Acknowledgements

We received considerable assistance in the use of
SUN workstations and UNIX from Mark Czerwin-
ski, Walter Schwarz, and Heather Bowen. Gordon
Ross provided valuable assistance in the installation
and use of IBM/370 C compilers. Don Isgitt and
Dale Mihalyi assisted us in the generation of seis-
mic test data and educated us in the use of the Cray.
Elena Anzalone edited the report, improving its read-
ability and organization. Any problems with layout,
formatting, and content are Bernecky’s doing.

9



This bibliography contains a number of entries for documents which are not cited in the report, but which
are relevant to the problem.

References

[Abr70] Philip Abrams.An APL Machine. PhD thesis, Stanford University, 1970. SLAC Report No.
114.

[BBJM90] Robert Bernecky, Charles Brenner, Stephen B. Jaffe, and George P. Moeckel. ACORN: APL to
C on real numbers. InACM SIGAPL Quote Quad, volume 20, pages 40–49, July 1990.

[Ber86] Robert Bernecky. APL: A prototyping language. InAPL86 Conference Proceedings, vol-
ume 16, pages 221–228. ACM SIGAPL Quote Quad, July 1986.

[BT82] Timothy A. Budd and Joseph Treat. Extensions to grid selector composition. Technical Report
82-7, University of Arizona, July 1982.

[Bud83] Timothy A. Budd. An APL compiler for the UNIX timesharing system.ACM SIGAPL Quote
Quad, 13(3), March 1983.

[Cro84] Steven Crouch. Real-time APL compiler, version 0.0. Technical report, I.P. Sharp Associates
Limited, 1984.

[CX87] Wai-Mee Ching and Andrew Xu. A vector code back end of the APL370 compiler on IBM
3090 and some performance comparisons. InAPL88 Conference Proceedings, volume 18,
pages 69–76. ACM SIGAPL Quote Quad, December 1987.

[GCDO87] Jr. Graham C. Driscoll and D.L. Orth. APL compilation: Where does the time come from?
ACM SIGAPL Quote Quad, 17(4), 1987.

[Gui87] Alain Guillon. An APL compiler: The Sofremi-AGL compiler–a tool to produce low-cost effi-
cient software. InAPL87 Conference Proceedings, volume 17, pages 151–156. ACM SIGAPL
Quote Quad, May 1987.

[GW78] Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation in APL.Fifth Annual
ACM Symposium on Principles of Programming Languages, 1978.

[Int84] International Standards Organization.InternationalStandard for ProgrammingLanguage APL,
ISO N8485 edition, 1984.

[Ive87] Kenneth E. Iverson. A dictionary of APL.ACM SIGAPL Quote Quad, 18(1), September 1987.

10



[Kos85] A. Koster. Compiling APL for parallel execution on an ffp machine. InAPL85 Conference
Proceedings. ACM, 1985. This paper contains a fairly extensive bibliography on other relevant
publications.

[KU78] M. Kaplan and J.D. Ullman. A general scheme for the automatic inference of variable types. In
Conference Record of the Fifth ACM Symposium on the Principles of Programming Languages.
ACM, 1978.

[Mil79] T. Miller. Type checking in an imprefect world. InConference Proceedings of the Sixth ACM
Symposium on the Principles of Programming Languages. ACM, 1979.

[MJ81] S.S. Muchnick and N.D. Jones.Program Flow Analysis: Theory and Applications. Prentice
Hall, 1981.

[RK87] Jack D. Rudd and Eric M. Klementis. APL–to–ada translator. InAPL87 Conference Proceed-
ings, volume 17, pages 269–283. ACM SIGAPL Quote Quad, May 1987.

[Str77] G.O. Strawn. Does APL really need run-time parsing.Software – Practice and Experience,
7:192–200, 1977.

[Wei85] Jim Weigang. An introduction to STSC’s APL compiler. InAPL85 Conference Proceedings,
volume 15, pages 231–238. ACM SIGAPL Quote Quad, May 1985.

[Wie79] Clark Wiedmann. Steps toward an APL compiler. InAPL79 Conference Proceedings, volume 9,
pages 321–328. ACM SIGAPL Quote Quad, June 1979.

[WS81] Zvi Weiss and Harry J. Saal. Compile time syntax analysis of APL programs. InAPL81
Conference Proceedings, volume 12, pages 313–320. ACM SIGAPL Quote Quad, October
1981.

[Yos86] Matuski Yoshino. APL as a prototyping language: Case study of a compiler development
project. InAPL86 Conference Proceedings, volume 16, pages 235–242. ACM SIGAPL Quote
Quad, July 1986.

11



SCALAR NOTES
FUNCTIONS
B+C Scalar extension is supported
B-C Scalar extension is supported
B«C Scalar extension is supported
BßC Scalar extension is supported

Divide by zero is not supported
BÍC Scalar extension is supported

Doesn’t comply with ISO APL for negative numbers
BÏC Scalar extension is supported

Left argument must be 4
BÓC Scalar extension is supported
BÄC Scalar extension is supported
B*C Scalar extension is supported
B=C Scalar extension is supported

Ìct assumed zero
B¨C Scalar extension is supported

Ìct assumed zero
B<C Scalar extension is supported

Ìct assumed zero
B¤C Scalar extension is supported

Ìct assumed zero
B¦C Scalar extension is supported

Ìct assumed zero
B>C Scalar extension is supported

Ìct assumed zero
-C
ÄC Ä¢1.2 is ¢1, not¢2 as in ISO APL

Ìct assumed zero
ÓC Correct results, but slower than floor

Ìct assumed zero
B,[Ìio]C Bracket axis operator not supported for any function

Figure 1: Scalar function characteristics

APPLICATION Cray FORTRAN Cray ACORN
(102Òfilter) conv 16000Òtrace 1.2µsec/element 4.6µsec/element
nmo 60 1000Òtrace 26 msec 187 msec

Figure 2: CRAY XMP convolution performance

12



MIXED and NOTES
DERIVED
FUNCTIONS
B+.«C No other inner products supported

No scalar extension
BÊ.«C
BÊ.ßC No other outer products supported
Ó/C Last axis only
+¯C First axis only

No other reductions supported
ÉC No error checking
,C
B,C No scalar extension
B/C Scalars and vectors only

No error checking.
Scalar extension supported

÷C Last axis only
ôC Rank 2 only
B÷C Last axis only

No error checking. No scalar extension
BÕC No error checking. Maximum rank 2
BÙC No error checking. Maximum rank 2

Error on attempted negative overtake
B[C] B rank 2 or less. Elided argument supported

Subscript may be of arbitrary rank
Indexed assignment supported

BûC Must be first function in line
aûbûc is forbidden
ý(0¨iûi+1)Òlbl is forbidden

îC Maximum rank 2 or less
Prints value on STDOUT
Abbreviates with “...” for large array

BîC Print entire array. Left argument ignored
vecin k Getk-element vector from input file “APLIN”

File assumed to be ASCII string of numbers,
delimited by one or more blanks

Figure 3: Mixed and defined function characteristics

13


